
   

Hesitant Fuzzy Sets 
Theory

Zeshui Xu

Studies in Fuzziness and Soft Computing   



Studies in Fuzziness and Soft Computing

Volume 314

Series editors

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

For further volumes:

http://www.springer.com/series/2941



About this Series

The series “Studies in Fuzziness and Soft Computing” contains publications on vari-
ous topics in the area of soft computing, which include fuzzy sets, rough sets, neural
networks, evolutionary computation, probabilistic and evidential reasoning, multi-
valued logic, and related fields. The publications within “Studies in Fuzziness and
Soft Computing” are primarily monographs and edited volumes. They cover signif-
icant recent developments in the field, both of a foundational and applicable charac-
ter. An important feature of the series is its short publication time and world-wide
distribution. This permits a rapid and broad dissemination of research results.



Zeshui Xu

Hesitant Fuzzy Sets
Theory

ABC



Zeshui Xu
Business School
Sichuang University
Chengdu
Sichuang
China

ISSN 1434-9922 ISSN 1860-0808 (electronic)
ISBN 978-3-319-04710-2 ISBN 978-3-319-04711-9 (eBook)
DOI 10.1007/978-3-319-04711-9
Springer Cham Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013958274

c© Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface 

When people make a decision, they are usually hesitant and irresolute for one 
thing or another which makes it difficult to reach a final agreement. For example, 
two decision makers discuss the membership degree of an element to a set, and 
one wants to assign 0.6 but the other 0.8. Accordingly, the difficulty of 
establishing a common membership degree is not because we have a margin of 
error, or some possibility distribution values, but because we have a set of possible 
values. To deal with such cases, Torra and Narukawa (2009) introduced the 
concept of hesitant fuzzy set (HFS). The HFS, as one of the extensions of Zadeh 
(1965)’s fuzzy set, allows the membership degree that an element to a set 
presented by several possible values, and can express the hesitant information 
more comprehensively than other extensions of fuzzy set. In 2011, Xu and Xia 
defined the concept of hesitant fuzzy element (HFE), which can be considered as 
the basic unit of a HFS, and is also a simple and effective tool used to express the 
decision makers’ hesitant preferences in the process of decision making. Since 
then, our research group has done lots of research work on aggregation, distance, 
similarity and correlation measures, clustering analysis, and decision making with 
hesitant fuzzy information. 

In this book, we give a thorough and systematic introduction to the main 
research results in hesitant fuzzy theory, which include the hesitant fuzzy 
aggregation techniques, the hesitant fuzzy preference relations, the hesitant fuzzy 
measures, the hesitant fuzzy clustering algorithms, and the hesitant fuzzy multi-
attribute decision making methods, etc. We organize this book into four chapters 
that deal with four different but related issues, which are listed below: 

Chapter 1 introduces a series of hesitant fuzzy aggregation operators. We first 
introduce the hesitant fuzzy elements (HFEs), give their comparison methods, 
basic operational laws, and their desirable properties. Based on these operations, 
we develop lots of operators for aggregating HFEs, such as the hesitant fuzzy 
weighted aggregation operators, the generalized hesitant fuzzy weighted 
aggregation operators,  the hesitant fuzzy ordered weighted aggregation operators, 
the generalized hesitant fuzzy ordered weighted aggregation operators, the hesitant 
fuzzy hybrid aggregation operators, the generalized hesitant fuzzy hybrid 
aggregation operators, the hesitant fuzzy Bonferroni means, the hesitant fuzzy 
aggregation operators based on quasi-arithmetic means and the induced idea, the 
hesitant fuzzy aggregation operators based on t-norms and t-conorms, the hesitant 
multiplicative aggregation operators, discuss their relations in detail, and apply 
them to the enterprise’s development planning of strategy initiatives, site 
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selection, the supplier selection in a supply chain, safety evaluation of work 
systems, etc. 

Chapter 2 mainly investigates the distance, similarity, correlation, entropy measures 
and clustering algorithms for hesitant fuzzy information. We first introduce a series of 
distance measures for HFSs, based on which the corresponding similarity measures are 
given. Then we investigate the distance and correlation measures for HFEs, and 
discuss their properties in detail. We introduce the concepts of entropy and cross-
entropy for hesitant fuzzy information, and analyze the relationships among the 
proposed entropy, cross-entropy, and similarity measures. We also introduce some 
correlation coefficient formulas and use them to calculate the degrees of correlation 
among HFSs aiming at clustering different objects. Moreover, we give the hesitant 
fuzzy agglomerative hierarchical clustering algorithm, the hierarchical hesitant fuzzy 
K-means clustering algorithm which takes the results of hierarchical clustering as the 
initial input, and also introduce a minimal spanning tree algorithm-based clustering 
technique to make clustering analysis of HFSs via some hesitant fuzzy distances. The 
applications of the algorithms in energy policy evaluation, medical diagnosis, supplier 
selection of manufacturing enterprise, software evaluation and classification, and 
tourism resources assessment, etc., are demonstrated. 

Chapter 3 focuses on group decision making with hesitant preference relations. 
We introduce the concepts of hesitant fuzzy preference relation and multiplicative 
preference relation, by using them we give two group decision making 
approaches. Based on the multiplicative consistency and the acceptable 
multiplicative consistency, we establish two algorithms to improve the 
inconsistency level of a hesitant fuzzy preference relation, and investigate the 
consensus of group decision making based on hesitant fuzzy preference relations. 
We introduce two regression methods that transform hesitant fuzzy preference 
relations into fuzzy preference relations, which depend on the additive transitivity 
and the weak consistency respectively. Based on two principles (i.e., a -
normalization and b -normalization), we develop a hesitant goal programming 

model to derive priorities from hesitant fuzzy preference relations and some 
consistency measures of hesitant fuzzy preference relations. Additionally, we 
introduce a hesitant fuzzy programming method to derive priorities from a hesitant 
multiplicative preference relation in AHP-hesitant group decision making. 

Chapter 4 is devoted to the multi-attribute decision making models with 
hesitant fuzzy information. Based on the TOPSIS and the maximizing deviation 
method, we give an approach for solving the multi-attribute decision making 
problems, in which the evaluation information provided by the decision maker is 
expressed in HFEs and the information about attribute weights is incomplete. By 
using the concepts of hesitant fuzzy concordance and hesitant fuzzy discordance 
which are based on the given scores and the deviation degrees, we introduce a 
hesitant fuzzy ELECTRE I method and apply it to solve the multi-attribute 
decision making problem with hesitant fuzzy information. With the incomplete 
weight information, we define the satisfaction degree of an alternative, based on 
which several optimization models are derived to determine the weights of 
attributes, and then develop an interactive method based on some optimization 
models for the multi-attribute decision making problems under hesitant fuzzy 
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environments. Moreover, all the given methods are illustrated and used in some 
practical applications.   

This book can be used as a reference for researchers and practitioners working 
in the fields of fuzzy mathematics, operations research, information science, 
management science and engineering, etc. It can also be used as a textbook for 
postgraduate and senior-year undergraduate students. 

This work was supported by the National Natural Science Foundation of China  
under Grant 61273209. 

Special thanks to Dr. Meimei Xia  for providing lots of useful material. 
 
 
 

December 2013                                                                                          Zeshui Xu 
Chengdu 
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Chapter 1   

Hesitant Fuzzy Aggregation Operators and 
Their Applications 

Since fuzzy set (Zadeh 1965) was introduced, several extensions have been 
developed, such as intutionistic fuzzy set (Atanassov 1986), type-2 fuzzy set 
(Dubois and Prade 1980; Miyamoto 2005), type- n  fuzzy set (Dubois and Prade 
1980), fuzzy multiset (Yager 1986; Miyamoto 2000) and hesitant fuzzy set (Torra 
and Narukawa 2009; Torra 2010; Zhu et al. 2012a). Intuitionistic fuzzy set has 
three main parts: membership function, non-membership function and hesitancy 
function. Type-2 fuzzy set allows the membership of a given element as a fuzzy 
set. Type-n  fuzzy set generalizes type-2 fuzzy set permitting the membership to 
be type- 1n-  fuzzy set. In fuzzy multiset, the elements can be repeated more than 
once. Hesitant fuzzy set (HFS) permits the membership having a set of possible 
values. Torra and Narukawa (2009) and Torra (2010) discussed the relationship 
between the HFS and other three kinds of fuzzy sets, and showed that the 
envelope of HFS is an intuitionistic fuzzy set. He also proved that the operations 
he proposed are consistent with the ones of intitionistic fuzzy sets when applied to 
the envelopes of hesitant fuzzy sets.  

HFSs can be applied in many decision making problems. To get the optimal 
alternative in a decision making problem with multiple attributes and multiple 
persons, there are usually two ways (Xia and Xu 2011a): (1) Aggregate the 
decision makers (DMs)’ opinions under each attribute for alternatives, and then 
aggregate the collective values of attributes for each alternative; (2) Aggregate the 
attribute values given by the DMs for each alternative, and then aggregate the 
DMs’ opinions for each alternative. For example, for a decision making problem 
with four attributes ( 1,2,3,4)jx j = , five DMs ( 1,2, 3, 4, 5)kD k =  are 

required to give the attribute values of three alternatives ( 1, 2, 3)iA i = . If we 

have known that 1D  is familiar with 1x , 2D  with 2x , 3D  with 3x , 4D  and 

5D  with 4x , then it is better to let the DM evaluate the attribute that he/she is 

familiar to, so as to make the decision information more reasonable. However, in 
some practical problems, anonymity is required in order to protect the DMs’ 
privacy or avoid influencing each other, for instance, the presidential election or 
the blind peer review of thesis, in which we don’t know which attributes that the 
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DMs are respectively familiar with, and thus, leading us to consider all the 
situations in order to get more reasonable decision results. But the existing 
methods only consider the minor situations that each DM is good at evaluating all 
the attributes, which hardly happen. The HFS is very useful in avoiding such 
issues in which each alternative can be described in a HFS defined in terms of the 
opinions of the DMs (Torra and Narukawa 2009), and each attribute under the 
alternative can be depicted by a hesitant fuzzy element (HFE) (Xu and Xia 2011a). 
Then the aggregation techniques should be given to fuse the HFEs for each 
alternative under the attributes. In the chapter, we should give a detailed 
introduction to the existing aggregation operators for hesitant fuzzy information, 
and their applications to multi-attribute decision making (MADM).  

1.1   Hesitant Fuzzy Elements  

1.1.1   Comparison Methods  

When people make a decision, they are usually hesitant and irresolute for one 
thing or another, which makes it difficult to reach a final agreement. The difficulty 
of establishing a common membership degree is not because we have one possible 
value (fuzzy set), or a margin of error (intuitionistic fuzzy set, interval-valued 
fuzzy set (Zadeh 1975), but because we have a set of possible values. In most 
cases, to get a more reasonable decision result, a decision organization, which 
contains a lot of DMs (or experts), is authorized to provide the preference 
information about a set of alternatives. Usually, the decision organization is not 
very sure about a value, but has hesitancy between several possible values, when it 
estimates the degrees that an alternative should satisfy an attribute (Xu and Xia 
2012a). For example, some DMs in the decision organization provide 0.3 , some 
provide 0.5 , and the others provide 0.6 , and when these three parts cannot 
persuade each other, the degrees that the alternative should satisfy the criterion 
can be represented by a hesitant fuzzy element (HFE) {0.3, 0.5, 0.6}  (Xu and 

Xia 2012a). It is noted that the HFE {0.3,0.5,0.6} , which can be considered as 

the basic unit of a hesitant fuzzy set (Torra and Narukawa 2009), can describe the 
above situation more comprehensively than the crisp number 0.3  (or 0.6 ), or 
the interval-valued fuzzy number [0.3,0.6], or the intuitionistic fuzzy number 

(IFN) (0.3,0.4)  (Xu and Yager 2006; Xu 2007a), because the degrees that the 

alternative should satisfy the attribute are not the convex of 0.3  and 0.6 , or the 
interval between 0.3  and 0.6 , but just three possible values 0.3 , 0.5  and 
0.6 . To deal with such cases, Torra and Narukawa (2009), and Torra (2010) 
proposed another generation of fuzzy set: 

 

Definition 1.1 (Torra and Narukawa 2009; Torra 2010). Let X  be a fixed set, a 

hesitant fuzzy set (HFS) on X  is in terms of a function that when applied to X  

returns a subset of [0,1] . 
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To be easily understood, Xia and Xu (2011a) expressed the HFS by a 
mathematical symbol: 

 
{ , ( ) | }AA x h x x X= < > Î                             (1.1) 

 
where ( )Ah x  is a set of some values in [0,1] , denoting the possible membership 

degrees of the element x XÎ  to the set A . Xu and Xia (2011b) called 

( )Ah h x=  a hesitant fuzzy element (HFE) and Q  the set of all HFEs. 
 

Example 1.1 (Chen et al. 2013a).  Let 1 2 3{ , , }X x x x=  be a fixed set, 

1( )Ah x =  {0.2,0.4,0.5} , 2( ) {0.3,0.4}Ah x =  and 3( ) {0.3,0.2,0.5,0.6}Ah x =  

be the HFEs of ( 1,2, 3)ix i =  to a set A , respectively. Then A  can be 

considered as a HFS: 
 

1 2 3{ , {0.2,0.4, 0.5} , , {0.3,0.4} , , {0.3,0.2, 0.5,0.6} }A x x x= < >< >< >  

 
Torra (2010) gave some special HFEs for x  in X :  

(1) Empty set: {0}h = , we denotes it as *O  for simplification.  

(2) Full set: {1}h = , denoted as *I . 

(3) Complete ignorance (all are possible): *[0,1]h U=  .  

(4) Nonsense set: *h = ∅ .  
 
Liao and Xu (2013a) made some deep clarifications on these special HFEs 

from the viewpoint of the definition of HFS and also from the practical decision 
making processes: As presented in Definition 1.1 and Eq.(1.1), the HFS on the 
fixed set X  is in terms of a function h  that when applied to X  returns a subset 
of [0,1]. Hence, if h  returns no value, it is adequate for us to assert that h  is a 

nonsense set. Analogously, if it returns the set [0,1], which means all values 

between 0  and 1  are possible, we call it complete ignorance. Particularly, if it 
returns only one value [0,1]g Î , this certainly makes sense because the single 

value [0,1]g Î  can also be seen as a subset of [0,1], i.e., we can take g  as 

[ , ]g g . When 0g = , which means the membership degree is zero, then we call 

it the empty set; While if 1g = , then we call it the full set. Note that we should 

not take the empty set as the set that there is no any value in it, and we also should 
not take the full set as the set of all possible values. This is the difference between 
the HFS and the traditional sets. The interpretations of these four HFEs in decision 
making are obvious. Consider an organization with several DMs from different 
areas to evaluate an alternative using HFEs. The empty set depicts that all DMs 
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oppose the alternative. The full set means that all DMs agree with it. The complete 
ignorance represents that all DMs have no idea for the alternative, and the 
nonsense set implies nonsense.  

To compare the HFEs, Xia and Xu (2011a) defined the following comparison 
method: 

 

Definition 1.2 (Xia and Xu 2011a).  For a HFE h , 
1

( )
hh

s h
l g

g
Î

= å  is called the 

score of h , where hl  is the number of the elements in h . For two HFEs 1h  and 

2h , if 1 2( ) ( )s h s h> , then 1h  is superior to 2h , denoted by 1 2h h> ; If 

1 2( ) ( )s h s h= , then 1h  is indifferent to 2h , denoted by 1 2h h . 

 
Example 1.2.  Let 1 {0.2,0.4,0.5}h = , 2 {0.3,0.4}h =  and 

3 {0.3,0.2,0.5,0.6}h =  

be three HFEs, then by Definition 1.3, we have 
 

1

0.2 0.4 0.5
( ) 0.367

3
s h

+ +
= =  

 

2

0.3 0.4
( ) 0.350

2
s h

+
= =  

 

3

0.3 0.2 0.5 0.6
( ) 0.400

4
s h

+ + +
= =  

 
Then 3 1 2( ) ( ) ( )s h s h s h> > , which indicates that 3 1 2h h h> > . 

It is noted that ( )s h  is directly related to the average value of all elements in 

h  expressing the average opinion of DMs. The higher the average value, the 
bigger the score ( )s h , and thus, the better the HFE h . However, in some special 

cases, this comparison method cannot be used to distinguish two HFEs. 
 

Example 1.3 (Liao et al. 2013).  Let 1 {0.1, 0.1, 0.7}h =  and 

2 {0.2, 0.4}h =  be two HFEs, then by Definition 1.2, we have 

 

1

0.1 0.1 0.7
( ) 0.3

3
s h

+ +
= = ,  

2

0.2 0.4
( ) 0.3

2
s h

+
= =  

 

Since 
1 2

( ) ( )s h s h= , we cannot tell the difference between 
1
h  and 

2
h  by 

using Definition 1.2. Actually, such a case is usually common in practice. It is 
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clear that Definition 1.2 does not take into account the situation that two HFEs 
1
h  

and 
2
h  have the same score, but their deviation degrees may be different. The 

deviation degree of all elements with respect to the average value in a HFE 
reflects how these elements agree with each other, that is, they have a higher 
consistency. To better represent this issue, Chen et al. (2013a) defined the concept 
of deviation degree:  

 
Definition 1.3 (Chen et al. 2013a).  For a HFE h , we define the deviation degree 
( )hs  of h  as follows: 

           ( )

1
221

( ) ( )
hh

h s h
l g

s g
Î

é ù
ê ú= -ê ú
ë û
å                                    (1.2) 

As it can be seen that ( )s h  is just as the mean value in statistics, and ( )hs  is 

just as the standard variance, which reflects the deviation degree between all 
values in the HFE h  and their mean value. Inspired by this idea, based on the 
score ( )s h  and the deviation degree ( )hs , Chen et al. (2013a) gave a method 

for the comparison and the ranking of two HFEs below:  
 

Definition 1.4 (Chen et al. 2013a).  Let 
1
h  and 

2
h  be two HFEs, 1( )s h  and 

2( )s h  the scores of 
1
h  and 

2
h , respectively, and 1( )hs  and 2( )hs  the 

deviation degrees of 
1
h  and 

2
h , respectively, then 

 If 1 2( ) ( )s h s h< , then 1 2h h< .  

 If 1 2( ) ( )s h s h= , then 

(i) If 1 2( ) ( )h hσ σ= , then 1 2h h= . 

(ii) If 1 2( ) ( )h hσ σ< , then 1 2h h> . 

(iii)  If 1 2( ) ( )h hσ σ> , then 1 2h h< . 

 
Example 1.4 (Chen et al. 2013a).  Let 1 {0.2, 0.3, 0.5,0.8}h = , 

2 {0.4, 0.6,0.8}h =  and 3 {0.3, 0.45, 0.6}h =  be three HFEs, respectively. 

Since 1( ) 0.45,s h =  2( ) 0.6s h =  and 3( ) 0.45s h = , then 

1 3 2( ) ( ) ( )s h s h s h= < , and we get 1 2h h<  and 3 2h h< . Furthermore, 

1( ) 0.229hs =  and 3( ) 0.123hs = , thus, 1 3( ) ( )h hs s> , and we have 

1 3h h< . Therefore, 1 3 2h h h< < . 
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Additionally, Liao et al. (2013) developed another deviation degree as follows: 
 

Definition 1.5 (Liao et al. 2013).  Let h  be a HFE, then 
 

2

,

1
( ) ( )

i j

i j
hh

h
l g g

s g g
Î

¢ = -å                                         (1.3) 

 
is called the deviation degree of h , which reflects the standard deviation among 
all pairs of elements in the HFE h . 

For two HFEs 
1
h  and 

2
h , if 1 2( ) ( )h hs s¢ ¢> , then 

1 2
h h< ; If 

1 2( ) ( )h hs s¢ ¢= , then 1 2h h= . 

By Definition 1.5, we can obtain in Example 1.3 that 
 

2 2

1

0 0.6 0.6
( ) 0.283

3
hs

+ +¢ = = ,  
2

2

0.2
( ) 0.100

2
hs¢ = =  

 

Then 1 2( ) ( )h hs s¢ ¢> , i.e., the variance degree of 
1
h  is higher than that of 

2
h , 

and thus, 1 2h h< . 

1.1.2   Basic Operations and Relations  

Given three HFEs represented by h , 1h  and 2h , Torra and Narukawa (2009), and 

Torra (2010) defined some operations on them, which can be described as: 
 

(1) {1 }c

h
h

g
g

Î
= - . 

 
(2) 

1 1 2 2
1 2 1 2

,
max{ , }

h h
h h

g g
g g

Î Î
=  . 

 
(3) 

1 1 2 2
1 2 1 2

,
min{ , }

h h
h h

g g
g g

Î Î
=  . 

 
Given an IFN (Xu and Yager 2006; Xu 2007a) ( , )vμ , its corresponding HFE 

is straightforward: [ ,1 ]h vμ= − , if 1 vμ ≠ − . But, the construction of the IFN 

from the HFE is not so easy when the HFE contains more than one number for 
each x XÎ . As for this issue, Torra and Narukawa (2009), and Torra (2010) 
showed that the envelop of a HFE is an IFN, expressed in the following definition: 

 



1.1   Hesitant Fuzzy Elements 7 

 

Definition 1.6 (Torra and Narukawa 2009; Torra 2010).  Given a HFE h , the IFN 
( )env ha  is defined as the envelope of h , where ( )env ha  can be represented as 

( ,1 )h h- +- , with min{ | }h hg g- = Î  and max{ | }h hg g+ = Î  

being its lower and upper bounds, respectively. 
 
Then, Torra (2010) gave the further study of the relationship between HFEs and 

IFNs: 
 

Theorem 1.1 (Torra 2010). 
 

(1) ( ) ( ( ))c c
env envh ha a= . 

 
(2) 1 2 1 2( ) ( ) ( )env env envh h h ha a a=  . 

 
(3) 1 2 1 2( ) ( ) ( )env env envh h h ha a a=  . 

 

A similar theorem holds when 
1
h  and 

2
h  define intervals:  

Theorem 1.2 (Torra 2010). Let 
1
h  and 

2
h  be two HFEs with ( )h x  being a 

nonempty convex set for all x  in X , i.e., 
1
h  and 

2
h  are IFNs, then 

(1) 1
ch  is equivalent to the IFN complement. 

(2) 1 2h h  is equivalent to the IFN intersection. 

(3) 1 2h h  is equivalent to the IFN union. 

 
The above theorem reveals that the operations defined for HFEs are consistent 

with the ones for IFNs. 
Based on the relationship between HFEs and IFNs, Xia and Xu (2011a) defined 

some operations for HFEs: 
 

Definition 1.7 (Xia and Xu 2011a).  Let h , 1h  and 2h  be three HFEs, and 

0l > , then 
 

(1)  { }
h

hl l

g
g

Î
=  .  

(2) { }1 (1 )
h

h l

g
l g

Î
= - - . 

(3) 
1 1 2 2

1 2 1 2 1 2
,

{ }
h h

h h
g g

g g g g
Î Î

Å = + - . 

(4) 
1 1 2 2

1 2 1 2
,

{ }
h h

h h
g g

g g
Î Î

Ä =  . 
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In fact, all the above operations on HFEs can be suitable for IFNs. However, 
neither Torra (2010) nor Xia and Xu (2011a) paid any attention on the subtraction 
and division operations over HFEs (or IFNs), which are significantly important in 
forming the integral theoretical framework of hesitant fuzzy information (Liao and 
Xu 2013b). Therefore, Liao and Xu (2013b) introduced the subtraction and 
division operations for HFEs: 

 
Definition 1.8 (Liao and Xu 2013b).  Let 1h  and 2h  be two HFEs, then 

 
(1) { }

1 1 2 2
1 2

,h h
h h

g g
g

Î Î
=  , where  

              

             

1 2
1 2 2

2

, 1
1
0,

if and

otherwise

g g
g g g

gg

-ìï ³ ¹ïïï -= íïïïïî

                    (1.4) 

 
(2) { }

1 1 2 2
1 2

,h h
h h

g g
g

Î Î
=  , where  

              

1
1 2 2

2

, 0

1,

if and

otherwise

g
g g g

gg
ìï £ ¹ïïï= íïïïïî

                       (1.5) 

              
To make it more adequate, Liao and Xu (2013b) further let:  

(3)  * *h U O= .  

(4)  * *h U O= . 
 
From which it is obvious that for any HFE h , the following equations hold: 
 

(5)  *h h O= . 

(6) *h O h= .  

(7)  * *h I O= . 

(8) *h h I= .  

(9) *h I h= . 

(10) * *h O I= .  
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In addition, it follows from the above equations that some special cases hold: 
 

(1) * * *I I O= ; * * *U I O= ; * * *O I O= . 

(2) * * *I U O= ; * * *U U O= ; * * *O U O= . 

(3) * * *I O I= ; * * *U O U= ; * * *O O O= . 

(4) * * *I I I= ; * * *U I U= ; * * *O I O= . 

(5) * * *I U O= ; * * *U U O= ; * * *O U O= . 

(6) * * *I O I= ; * * *U O I= ; * * *O O I= . 
 
For the brevity of presentation, in the process of theoretical derivation 

thereafter, we shall not consider the particular case where 0g =  in the 

subtraction operation and 1g =  in the division operation. 

Similar to Theorem 1.1, the relationship between IFNs and HFEs can be further 
discussed:  

 
Theorem 1.3 (Xia and Xu 2011a).  Let h , 1h  and 2h  be three HFEs, and 

0l > , then 
 

(1) ( ) ( ( ))env envh hl la a= . 

 
(2) ( ) ( ( ))env envh ha l l a= . 

 
(3) 1 2 1 2( ) ( ) ( )env env envh h h ha a aÅ = Å . 

 
(4) 1 2 1 2( ) ( ) ( )env env envh h h ha a aÄ = Ä . 

 
Proof.  For any three HFEs h , 1h  and 2h , we have 

 

(1) { }( ) ( )( ) | ( ) ,1 ( )env envh h h hl l l la a g g - += Î = - , 

 

( ) ( )( ( )) ( ,1 ) ( ) ,1 (1 (1 )) ( ) ,1 ( )env h h h h h h hl l l l l la - + - + - += - = - - - = - . 

 

(2) { }( )( ) 1 (1 ) |env envh hla l a g g= - - Î  

 

( )( ) ( )1 (1 ) ,1 1 (1 ) 1 (1 ) , (1 )h h h hλ λ λ λ− + − += − − − − − = − − − , 

 

( )( ( )) ( ,1 ) 1 (1 ) , (1 )env h h h h hλ λλ α λ − + − += − = − − − . 
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(3) ( )1 2 1 2 1 2 1 1̀ 2 2( ) { | , }env envh h h hα α γ γ γ γ γ γ⊕ = + − ∈ ∈  

 

1 2 1 2 1 2 1 2 1 2 1 2 1 2( ,1 ( )) ( , (1 )(1 ))h h h h h h h h h h h h h h− − − − + + + + − − − − + += + − − + − = + − − − , 

 

1 2 1 1 2 2 1 2 1 2 1 2( ) ( ) ( ,1 ) ( ,1 ) ( ,(1 )(1 ))env envh h h h h h h h h h h hα α − + − + − − − − + +⊕ = − ⊕ − = + − − − . 

 

(4) ( )1 2 1 2 1 1̀ 2 2 1 2 1 2( ) { | , } ( ,1 )env envh h h h h h h hα α γ γ γ γ − − + +⊗ = ∈ ∈ = − , 

 

1 2 1 1 2 2( ) ( ) ( ,1 ) ( ,1 )env envh h h h h hα α − + − +⊗ = − ⊗ −  

 

1 2 1 2 1 2 1 2 1 2( ,(1 ) (1 ) (1 )(1 )) ( ,1 )h h h h h h h h h h− − + + + + − − + += − + − − − − = − . 

 
Thus the proof is completed. 

Some relationships can also be further established for those operations on 
HFEs: 

 
Theorem 1.4 (Xia and Xu 2011a).  For three HFEs h , 1h  and 2h , then  

 

(1) 1 2 1 2( )c c ch h h h=  . 

(2) 1 2 1 2( )c c ch h h h=  . 

(3) ( ) ( )c ch hλ λ= . 

(4) ( )( )
cch hλλ = . 

(5) 1 2 1 2( )c c ch h h h⊕ = ⊗ . 

(6) 1 2 1 2( )c c ch h h h⊗ = ⊕ . 

 
Proof.  For three HFEs h , 1h  and 2h , we have 

 
(1) 

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

, ,
max{1 ,1 } {1 min{ , }} ( )c c c

h h h h
h h h h

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈
= − − = − =    . 

 
(2) 

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

, ,
min{1 ,1 } {1 max{ , }} ( )c c c

h h h h
h h h h

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈
= − − = − =    . 

 

(3) { } { }( ) (1 ) 1 (1 ) ( )
c

c c

h h
h hλ λ λ

γ γ
γ γ λ

∈ ∈

 = − = − − = 
 

  . 
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(4) { } { } ( )1 (1 (1 )) 1
cc

h h
h hλ λ λ

γ γ
λ γ γ

∈ ∈
= − − − = − =  . 

 

(5) 
1 1 2 2

1 2 1 2 1 2
,

{(1 ) (1 ) (1 )(1 )}c c

h h
h h

γ γ
γ γ γ γ

∈ ∈
⊕ = − + − − − −  

                      1 1 2 2

1 2 1 2
,

{1 } ( )c

h h
h h

γ γ
γ γ

∈ ∈
= − = ⊗ . 

 

(6) 
1 1 2 2

1 2 1 2
,

{(1 )(1 )}c c

h h
h h

γ γ
γ γ

∈ ∈
⊗ = − −  

                       
1 1 2 2

1 2 1 2 1 2
,

{1 ( )} ( )c

h h
h h

γ γ
γ γ γ γ

∈ ∈
= − + − = ⊕ , 

 
which completes the proof of the theorem. 

 
Theorem 1.5 (Zhu et al. 2012b).  Let h , 1h  and 2h  be three HFEs, 0λ > , then 

(1) 1 2 1 2( )h h h hλ λ λ⊕ = ⊕ . 
 
(2) 1 2 1 2( )h h h hλ λ λ⊗ = ⊗ . 
 
Proof.  By the operational of HFEs, we have 
 
(1) Since 

 

( ){ }
1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2 1 2
, ,

( ) { } 1 1 ( )
h h h h

h h λ

γ γ γ γ
λ λ γ γ γ γ γ γ γ γ

∈ ∈ ∈ ∈

 ⊕ = + − = − − + − 
 
   

 

( ){ } ( ){ }
1 1 2 2 1 1 2 2

1 2 1 2
, ,

1 1 (1 (1 )(1 )) 1 (1 ) (1 )
h h h h

λ λ λ

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈
= − − − − − = − − −        (1.6) 

 
and 
 

( ) ( ){ }
1 1 2 2

1 2 1 2 1 2
,

1 (1 ) 1 (1 ) 1 (1 ) 1 (1 )
h h

h h λ λ λ λ

γ γ
λ λ γ γ γ γ

∈ ∈
⊕ = − − + − − − − − − −      

{ }
1 1 2 2

1 2
,

1 (1 ) (1 )
h h

λ λ

γ γ
γ γ

∈ ∈
= − − −                                                (1.7) 

 

then we have ( )1 2 1 2h h h hλ λ λ⊕ = ⊕ . 
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(2) Since 

         ( ) { }
1 1 2 2 1 1 2 2

1 2 1 2 1 2
, ,

{ } ( )
h h h h

h h
λ

λ λ

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈

 ⊗ = = 
 
             (1.8)  

and 

         { } { } { }
1 1 2 2 1 1 2 2

1 2 1 2 1 2
,

( )
h h h h

h hλ λ λ λ λ

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈
⊗ = ⊗ =             (1.9) 

 

then we have 1 2 1 2( )h h h hλ λ λ⊗ = ⊗ , which completes the proof of the theorem. 
 

Theorem 1.6 (Liao and Xu 2013b).  Let 1h  and 2h  be two HFEs, then  

(1) ( )1 2 2 1h h h h⊕ = , if 1 2 2, 1γ γ γ≥ ≠ . 

(2) ( )1 2 2 1h h h h⊗ = , if 1 2 2, 0γ γ γ≤ ≠ . 

 
Proof.  For two HFEs 1h  and 2h , we have 

(1) ( )
1 1̀ 2 2 1 2 2

1 2
1 2 2 2

, , , 1
21h h

h h h h
γ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

 −⊕ = ⊕ − 
  

1 1̀ 2 2 1 2 2

1 2 1 2
2 2

, , , 1
2 21 1h hγ γ γ γ γ

γ γ γ γγ γ
γ γ∈ ∈ ≥ ≠

 − −= + − − − 
  

( ) { }
1 1̀ 2 2 1 2 2 1 1̀

1 2
1 1

, , , 1
2

1

1h h h
h

γ γ γ γ γ γ

γ γ
γ

γ∈ ∈ ≥ ≠ ∈

− 
= = = − 

  . 

(2) ( )
1 1̀ 2 2 1 2 2

1
1 2 2 2

, , , 0
2

h h
h h h h

γ γ γ γ γ

γ
γ∈ ∈ ≤ ≠

 
⊗ = ⊗ 

 
  

{ }
1 1̀ 2 2 1 2 2 1 1̀

1
2 1 1

, , , 0
2

h h h
h

γ γ γ γ γ γ

γ γ γ
γ∈ ∈ ≤ ≠ ∈

 
= ⋅ = = 

 
  . 

 
This completes the proof of the theorem. 

 
Theorem 1.7 (Liao and Xu 2013b).  Let 1h  and 2h  be two HFEs, 0λ > , then  

(1) ( )1 2 1 2h h h hλ λ λ=  , if 1 2 2, 1γ γ γ≥ ≠ . 

(2) ( )1 2 1 2h h h h
λ λ λ=  , if 1 2 2, 0γ γ γ≤ ≠ . 

 



1.1   Hesitant Fuzzy Elements 13 

 

Proof.  For two HFEs 1h  and 2h , we have 

(1) ( )
1 1̀ 2 2 1 2 2

1 2
1 2

, , , 1
21h h

h h
γ γ γ γ γ

γ γλ λ
γ∈ ∈ ≥ ≠

  −=    −  
  

1 1̀ 2 2 1 2 2

1 2

, , , 1
2

1 1
1h h

λ

γ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

  − = − −  −   
  

( ) ( )
( )1 1̀ 2 2 1 2 2

2 1

, , , 1
2

1 1

1h h

λ λ

λγ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

 − − − =  
−  

 . 

 

{ } { }
1 1 2 2

1 2 1 21 (1 ) 1 (1 )
h h

h h λ λ

γ γ
λ λ γ γ

∈ ∈
= − − − −    

 

Since ( 0)y xλ λ= >  is a monotonically increasing function when 0x > , and 

also since 1 2 2, 1γ γ γ≥ ≠ , it follows that 1 21 (1 ) 1 (1 )λ λγ γ− − ≥ − − , 

21 (1 ) 1λγ− − ≠ . Thus, 

( )( ) ( )( )
( )( )1 1̀ 2 2 1 2 2

1 2

1 2
, , , 1

2

1 1 1 1

1 1 1h h
h h

λ λ

λγ γ γ γ γ

γ γ
λ λ

γ∈ ∈ ≥ ≠

 − − − − − =  
− − −  

  

 

( ) ( )
( )

( )
1 1̀ 2 2 1 2 2

2 1
1 2

, , , 1
2

1 1

1h h
h h

λ λ

λγ γ γ γ γ

γ γ
λ

γ∈ ∈ ≥ ≠

 − − − = = 
−  

   

 

(2)  ( )
1 1̀ 2 2 1 2 2 1 1̀ 2 2 1 2 2

1 1
1 2

, , , 0 , , , 0
2 2

h h h h
h h

λ λ
λ

γ γ γ γ γ γ γ γ γ γ

γ γ
γ γ∈ ∈ ≤ ≠ ∈ ∈ ≤ ≠

      = =             
  . 

 

{ } { }
1 1 2 2

1 2 1 2
h h

h hλ λ λ λ

γ γ
γ γ

∈ ∈
=     

 

Since 1 2 ,γ γ γ≤
 
and

 2 0γ ≠ , it yields 1 2 ,λ λγ γ≤
 
and 2 0λγ ≠ , then 

 

( )
1 1̀ 2 2 1 2 2 1 1̀ 2 2 1 2 2

1 1
1 2 1 2

, , , 0 , , , 0
2 2

h h h h
h h h h

λλ
λλ λ

λγ γ γ γ γ γ γ γ γ γ

γ γ
γ γ∈ ∈ ≤ ≠ ∈ ∈ ≤ ≠

     = = =    
     

    

This completes the proof of the theorem. 
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Theorem 1.8 (Liao and Xu 2013b). Let { }
h

h
γ

γ
∈

=   be a HFE, and 1 2 0λ λ≥ > , 

then  
 

(1) ( )1 2 1 2h h hλ λ λ λ= − , if 1γ ≠ . 

(2) ( )1 21 2h h h λ λλ λ −= , if 0γ ≠ . 

 
Proof.  For a HFE h  and 1 2, 0λ λ > , we have 

 

(1) { } { }1 2
1 2 1 (1 ) 1 (1 )

h h
h h λ λ

γ γ
λ λ γ γ

∈ ∈
= − − − −   . 

 

Since (0 1)xy a a= < <  is a monotonically decreasing function when 

0x > , and also since 1 2λ λ≥ , 1γ ≠ , it follows that 

1 21 (1 ) 1 (1 )λ λγ γ− − ≥ − − , 21 (1 ) 1λγ− − ≠ . Thus, 

( )( ) ( )( )
( )( )

( ) ( )
( )

1 2
2 1

22
1 2

1 1 1 1 1 1

11 1 1h h
h h

λ λ λ λ

λλγ γ

γ γ γ γ
λ λ

γγ∈ ∈

 − − − − −  − − −   = =   
−− − −      

   

( )
( )

( ){ } ( )
1

1 2

2 1 2

1
1 1 1

1h h
h

λ
λ λ

λγ γ

γ
γ λ λ

γ
−

∈ ∈

 − = − = − − = − 
−  

        (1.10) 

 

(2) { } { }1 2 1 2

h h
h hλ λ λ λ

γ γ
γ γ

∈ ∈
=    .  

 

From 1 2 0λ λ≥ > , and 0γ ≠ , we can obtain 1 2λ λγ γ≤ , and 2 0λγ ≠ . Hence,  

( ){ } ( )1

1 1 1 21 2

2h h
h h h

λ
λ λ λ λλ λ

λγ γ

γ γ
γ

− −

∈ ∈

 
= = = 

 
             (1.11) 

 
which completes the proof. 

 
Theorem 1.9 (Liao and Xu 2013b).  For three HFEs 1h , 2h , and 3h , the 

following are valid:  
 

(1) 1 2 3 1 3 2h h h h h h=    , if 1 2 1 3 2 3 1 2 3 2 3, , 1, 1, 0γ γ γ γ γ γ γ γ γ γ γ≥ ≥ ≠ ≠ − − + ≥ . 

(2) 1 2 3 1 3 2h h h h h h=    , if 1 2 3 2 3, 0, 0γ γ γ γ γ≤ ≠ ≠ . 
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Proof.  (1) Since 1 2 3 2 3 0γ γ γ γ γ− − + ≥ , then  

          1 2 3 2 31 2
3

2 2

0
1 1

γ γ γ γ γγ γ γ
γ γ

− − +− − = ≥
− −

                       (1.12) 

Thus, 
 

1 1̀ 2 2 1 2 2

1 2
1 2 3 3

, , , 1
21h h

h h h h
γ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

 −=  − 
    

1 2 1 3 2 3 1 2 3 2 3

1 2
3

2

, , 1, 1, 0
3

1

1γ γ γ γ γ γ γ γ γ γ γ

γ γ γ
γ

γ≥ ≥ ≠ ≠ − − + ≥

− − − =  − 
  

  

( )( )1 2 1 3 2 3 1 2 3 2 3

1 2 3 2 3

, , 1, 1, 0
2 31 1γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ
γ γ≥ ≥ ≠ ≠ − − + ≥

 − − + =  − −  
  

 
Also since 1 2 3 2 3 0γ γ γ γ γ− − + ≥ , then 

 

1 3 1 3 2 2 3
2

3 3

0
1 1

γ γ γ γ γ γ γγ
γ γ

− − − +− = ≥
− −

                      (1.13) 

 
Thus, 

1 1̀ 3 3 1 3 3

1 3
1 3 2 2

, , , 1
31h h

h h h h
γ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

 −=  − 
    

1 2 1 3 2 3 1 2 3 2 3

1 3
2

3

, , 1, 1, 0
2

1

1γ γ γ γ γ γ γ γ γ γ γ

γ γ γ
γ

γ≥ ≥ ≠ ≠ − − + ≥

− − − =  − 
  

  

( )( )1 2 1 3 2 3 1 2 3 2 3

1 2 3 2 3

, , 1, 1, 0
2 31 1γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ
γ γ≥ ≥ ≠ ≠ − − + ≥

 − − + =  − −  
            (1.14) 

 
Thus, 1 2 3 1 3 2h h h h h h=    . 
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(2) Since 1 2 3 2 3and, 0, 0 1γ γ γ γ γ≤ ≠ < ≤ , then 1 2 3 2γ γ γ γ≤ ≤ , and 

1
3

2

γ γ
γ

≤ . Thus, 

1 `1 2 2 1 2 2

1
1 2 3 3

, , , 0
2

h h
h h h h

γ γ γ γ γ

γ
γ∈ ∈ ≤ ≠

 
=  

 
    

               
1 2 3 2 3 1 2 3 2 3

1 2 1

, 0, 0 , 0, 0
3 2 3

γ γ γ γ γ γ γ γ γ γ

γ γ γ
γ γ γ≤ ≠ ≠ ≤ ≠ ≠

   
= =   

   
                  (1.15) 

Meanwhile, from 1 2 3 3 2and, 0,  0 1γ γ γ γ γ≤ ≠ < ≤ , we can also obtain 

1 2 3 3γ γ γ γ≤ ≤ , and 1
2

3

γ γ
γ

≤ . Thus, 

1 1̀ 3 3 1 3 3

1
1 3 2 2

, , , 0
3

h h
h h h h

γ γ γ γ γ

γ
γ∈ ∈ ≤ ≠

 
=  

 
    

     
1 2 3 2 3 1 2 3 2 3

1 3 1

, 0, 0 , 0, 0
2 2 3

γ γ γ γ γ γ γ γ γ γ

γ γ γ
γ γ γ≤ ≠ ≠ ≤ ≠ ≠

  
= =   

   
                     (1.16) 

Thus, 1 2 3 1 3 2h h h h h h=    . This completes the proof of the theorem. 

 
Theorem 1.10 (Liao and Xu 2013b).  For three HFEs 1h , 2h , and 3h , the 

following are valid:  
 

(1) ( )1 2 3 1 2 3h h h h h h= ⊕   , if 1 2 1 3 2 3 1 2 3 2 3and, , 1, 1,  0γ γ γ γ γ γ γ γ γ γ γ≥ ≥ ≠ ≠ − − + ≥ . 

(2) ( )1 2 3 1 2 3h h h h h h= ⊗   , if 1 2 3 2 3and, 0,  0γ γ γ γ γ≤ ≠ ≠ . 
 

Proof.  (1) According to (1) in Theorem 1.6, it follows that  
 

( ) ( )1 2 1 3 2 3 1 2 3 2 3

1 2 3 2 3
1 2 3

, , 1, 1, 0
2 31 1

h h h
γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ
γ γ≥ ≥ ≠ ≠ − − + ≥

 − − + =  − −  
        (1.17) 

 

( ) { }
2 2 3 3

1 2 3 1 2 3 2 3
,h h

h h h h
γ γ

γ γ γ γ
∈ ∈

 ⊕ = + − 
 
   

1 2 1 3 2 3 1 2 3 2 3

1 2 3 2 3

, , 1, 1, 0
2 3 2 3

( )

1 ( )γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ
γ γ γ γ≥ ≥ ≠ ≠ − − + ≥

 − + −=  − + − 
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( )( )1 2 1 3 2 3 1 2 3 2 3

1 2 3 2 3

, , 1, 1, 0
2 31 1γ γ γ γ γ γ γ γ γ γ γ

γ γ γ γ γ
γ γ≥ ≥ ≠ ≠ − − + ≥

 − − + =  − −  
    

 

1 2 3h h h=                                                                        (1.18) 

 
(2) According to (2) in Theorem 1.6, we have 

 

1 2 3 2 3

1
1 2 3

, 0, 0
2 3

h h h
γ γ γ γ γ

γ
γ γ≤ ≠ ≠

 
=  

 
                     (1.19) 

 

( ) { }
2 2 3 3

1 2 3 1 2 3
,h h

h h h h
γ γ

γ γ
∈ ∈

 ⊗ =  
 
   

1 2 3 2 3

1
1 2 3

, 0, 0
2 3

h h h
γ γ γ γ γ

γ
γ γ≤ ≠ ≠

 
= = 

 
                     (1.20) 

which completes the proof of the theorem. 
It should be noted that in the above theorems, the equations hold only under the 

given preconditions. Moreover, the relationships between IFNs and HFEs can be 
further verified in terms of these two operations: 

 
Theorem 1.11 (Liao and Xu 2013b).  Let 1h  and 2h  be two HFEs, then 

(1) 1 2 1 2( ) ( ) ( )env env envh h h hα α α=  . 

(2) 1 2 1 2( ) ( ) ( )env env envh h h hα α α=  . 
 

Proof.  (1) 1 2
1 2 1 1̀ 2 2 1 2 2

2

( ) , , , 1
1env envh h h h
γ γα α γ γ γ γ γ

γ
  − = ∈ ∈ ≥ ≠   −   

  

1 2 1 2 1 2 1

2 2 2 2

1
,1 ,

1 1 1 1

h h h h h h h

h h h h

− − + + − − +

− + − +

   − − − −= − =   − − − −   
. 

 

( ) ( ) 1 2 1
1 2 1 1 2 2

2 2

1
( ) ( ) ,1 ,1 ,

1 1env env

h h h
h h h h h h

h h
α α

− − +
− + − +

− +

 − −= − − =  − − 
     (1.21) 
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(2) 1 1 2
1 2 1 1̀ 2 2 1 2 2

2 1 2

( ) , , , 0 ,1env env

h h
h h h h

h h

γα α γ γ γ γ γ
γ

− +

− +

     = ∈ ∈ ≤ ≠ = −          
 . 

 

( ) ( )1 2 1 1 2 2( ) ( ) ,1 ,1env envh h h h h hα α − + − += − −   

 

1 1 2 1 1

1 2 1 2

(1 ) (1 )
, ,1

1 (1 )

h h h h h

h h h h

− + + − +

− + − +

   − − −= = −   − −   
          (1.22) 

 
Thus, the proof is completed. 

Theorem 1.11 further reveals that the subtraction and division operations 
defined for HFEs are consistent with the ones for IFNs. The following theorem 
reveals the relationship between these two operations: 

 
Theorem 1.12 (Liao and Xu 2013b).  For two HFEs 1h  and 2h , the following are 

valid:  
 

(1) ( )1 2 1 2

cc ch h h h=  . 

(2) ( )1 2 1 2

cc ch h h h=  . 
 

Proof.  (1) 
1 1 2 2 1 2 2

1 2
1 2

, , , 0
2

(1 ) (1 )

1 (1 )
c c

h h
h h

γ γ γ γ γ

γ γ
γ∈ ∈ ≤ ≠

 − − −=  − − 
  

1 1 2 2 1 2 2

1 2

, , , 0
2

(1 ) (1 )

1 (1 )h hγ γ γ γ γ

γ γ
γ∈ ∈ ≤ ≠

 − − −=  − − 
  

( )
1 1 2 2 1 2 2

1
1 2

, , , 0
2

1
c

h h
h h

γ γ γ γ γ

γ
γ∈ ∈ ≤ ≠

 
= − = 

 
  . 

 

(2) 
1 1̀ 2 2 1 2 2

1
1 2

, , , 1
2

1

1
c c

h h
h h

γ γ γ γ γ

γ
γ∈ ∈ ≥ ≠

 −=  − 
  

     

     ( )
1 1̀ 2 2 1 2 2

1 2
1 2

, , , 1
2

1
1

c

h h
h h

γ γ γ γ γ

γ γ
γ∈ ∈ ≥ ≠

 −= − = − 
  , 

 
which completes the proof of the theorem. 
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Example 1.5 (Liao and Xu 2013b).  Consider two HFEs 1 {0.3,0.2}h =  and 

2 {0.1,0.2}h = . According to (1) in Definition 1.8, we have  

 

1 2

0.3 0.1 0.3 0.2 0.2 0.1 0.2 0.2 2 1 1
, , , , , ,0

1 0.1 1 0.2 1 0.1 1 0.2 9 8 9
h h

− − − −   = =   − − − −   
  

 

In addition, 1 {0.7,0.8}ch = , and 2 {0.9,0.8}ch = . Then by (2) in Definition 

1.8, we obtain  
 

1 2

0.7 0.8 0.7 0.8 7 8 7
, , , , , ,1

0.9 0.9 0.8 0.8 9 9 8
c ch h

   = =   
   

  

 
Since  

 

( )1 2

2 1 1 7 8 7
1 ,1 ,1 ,1 0 , , ,1

9 8 9 9 9 8
c

h h    = − − − − =   
   

  

 

then ( )1 2 1 2

c c ch h h h=  , which verifies (2) of Theorem 1.12. (1) of Theorem 

1.12 can be verified similarly. 
Now we introduce the concepts of t-norms and t-conorms which are defined as 

follows:  
 

Definition 1.9 (Klir and Yuan 1995; Nguyen and Walker 1997).  A function T : 
[0,1] [0,1] [0,1]× →  is called a t-norm if it satisfies the following four 

conditions: 
 

(1) (1, )T x x= , for all x . 

 

(2) ( , ) ( , )T x y T y x=  , for all x  and y . 

 

(3) ( ) ( ), ( , ) ( , ),T x T y z T T x y z=    , for all x , y  and z . 

 

(4) If 'x x≤  and 'y y≤ , then ' '( , ) ( , )T x y T x y≤  . 

 

Definition 1.10 (Klir and Yuan 1995; Nguyen and Walker 1997).  A function S : 

[0,1] [0,1] [0,1]× →  is called a t-conorm if it satisfies the following four 

conditions: 
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(1) (0, )S x x= , for all x . 
 

(2) ( , ) ( , )S x y S y x=  , for all x  and y . 
 

(3) ( ) ( ), ( , ) ( , ),S x S y z S S x y z=    , for all x , y  and z . 
 

(4)  If 'x x≤  and 'y y≤ , then ' '( , ) ( , )S x x S x x≤  . 

 
Definition 1.11 (Klir and Yuan 1995; Nguyen and Walker 1997).  A t-norm 

function ( , )T x y  is called Archimedean t-norm if it is continuous and 

( , )T x x x<  for all (0,1)x ∈ . An Archimedean t-norm is called strictly 

Archimedean t-norm if it is strictly increasing in each variable for , (0,1)x y ∈ . 

 
Definition 1.12 (Klir and Yuan 1995; Nguyen and Walker 1997).  A t-conorm 

function ( , )S x y  is called Archimedean t-conorm if it is continuous and 

( , )S x x x>  for all (0,1)x ∈ . An Archimedean t-conorm is called strictly 

Archimedean t-conorm if it is strictly increasing in each variable for 
, (0,1)x y ∈ . 
 

It is well known (Klement and Mesiar 2005) that a strict Archimedean t-norm is 

expressed via its additive generator τ  as ( )1( , ) ( ) ( )T x y x yτ τ τ−= +    , and 

similarly, applied to the t-conorm ( )1( , ) ( ) ( )S x y s s x s y−= +     with ( ) (1 )s t tτ= −  . 

Moreover, the additive generator of a continuous Archimedean t-norm is a strictly 
decreasing function τ : [0,1] [0, ]→ ∞  such that (1) 0τ = . 

Based on the relationship between HFEs and IFNs, Xia and Xu (2012a) defined 
some general operations for the HFEs based on Archimedean t-norm and t-conorm 
(Klir and Yuan 1995; Nguyen and Walker 1997): 

 

Definition 1.13 (Xia and Xu 2012a).  Let h , 1h  and 2h  be three HFEs, then  

(1) ( ){ }1 ( )
h

hλ

γ
τ λτ γ−

∈
=   . 

 

(2) ( ){ }1 ( )
h

h s s
γ

λ λ γ−

∈
=   . 

 

(3) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

h h
h h

γ γ
τ τ γ τ γ−

∈ ∈
⊗ = +   . 

 

(4) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

h h
h h s s s

γ γ
γ γ−

∈ ∈
⊕ = +   . 
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where ( ) (1 )s t tτ= −  , and τ : [0,1] [0, ]→ ∞  is a strictly decreasing function 

such that (1) 0τ = . 

Based on the operations in Definition 1.13, we can prove that Theorems 1.3 and 
1.4 also hold. Moreover, some other relationships can be established for these 
operations on HFEs: 

 
Theorem 1.13 (Xia and Xu 2012a).  For three HFEs 1h , 2h  and 3h , the 

following are valid:  

(1) 1 2 3 1 2 3( ) ( )h h h h h h⊕ ⊕ = ⊕ ⊕ . 

(2) 1 2 3 1 2 3( ) ( )h h h h h h⊗ ⊗ = ⊗ ⊗ . 

 

Proof.  (1) ( ){ }
2 2 3 3

1
1 2 3 1 2 3

,
( ) ( ) ( )

h h
h h h h s s s

γ γ
γ γ−

∈ ∈
⊕ ⊕ = ⊕ +    

          

    ( )( )( ){ }
1 1 2 2 3 3

1 1
1 2 3

, ,
( ) ( ) ( )

h h h
s s s s s s

γ γ γ
γ γ γ− −

∈ ∈ ∈
= + +      

 

( ){ }
1 1 2 2 3 3

1
1 2 3

, ,
( ) ( ) ( )

h h h
s s s s

γ γ γ
γ γ γ−

∈ ∈ ∈
= + +     

 

( )( )( ){ }
1 1 2 2 3 3

1 1
1 2 3

, ,
( ) ( ) ( )

h h h
s s s s s s

γ γ γ
γ γ γ− −

∈ ∈ ∈
= + +       

 

1 2 3( )h h h= ⊕ ⊕ . 
 

Similarly, (2) can be proven. 
 

Theorem 1.14 (Xia and Xu 2012a).  Let 1h , 2h  and 3h  be three HFEs, then 

(1) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊕ ⊕ = ⊕ ⊕ . 

(2) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊕ ⊕ = ⊕ ⊕ . 

(3) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊕ ⊕ = ⊕ ⊕ . 

(4) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( )env env env env env envh h h h h hα α α α α α⊕ ⊕ = ⊕ ⊕ . 

(5) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊗ ⊗ = ⊗ ⊗ . 

(6) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊗ ⊗ = ⊗ ⊗ . 

(7) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊗ ⊗ = ⊗ ⊗ . 

(8) ( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( ) ( ) ( )env env env env env envh h h h h hα α α α α α⊗ ⊗ = ⊗ ⊗ . 
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Proof.  We only prove (1) and (5), the others can be obtained similarly: 
 

(1) ( )1 2 3( )env h h hα ⊕ ⊕  

( ) ( )( )1 1
1 1 1 1 1 1( ) ( ) ( ) ,1 ( ) ( ) ( )s s h s h s h s s h s h s h− − − − − + + += + + − + +        . 

 

Since ( ) (1 )s t tτ= −  , and 1 1( ) 1 ( )s t tτ− −= −  , then 

 

( )1 2 3( )env h h hα ⊕ ⊕  

( ) ( )( )1 1
1 1 1 1 1 1( ) ( ) ( ) , (1 ) (1 ) (1 )s s h s h s h h h hτ τ τ τ− − − − − + + += + + − + − + −          (1.23) 

 

On the other hand, we have 
 

( )1 2 3( ) ( ) ( )env env envh h hα α α⊕ ⊕ ( )1 1 2 2 3 3( ,1 ) ( ,1 ) ( ,1 )h h h h h h− + − + − += − ⊕ − ⊕ −  

( ) ( )( )1 1
1 1 2 3 2 3( ,1 ) ( ) ( ) , (1 ) (1 )h h s s h s h h hτ τ τ− + − − − − + += − ⊕ + − + −       

( ) ( )( )1 1
1 2 3 1 2 3( ) ( ) ( ) , (1 ) (1 ) (1 )s s h s h s h h h hτ τ τ τ− − − − − + + += + + − + − + −         

 
which derives that 

 

( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊕ ⊕ = ⊕ ⊕  

 

(5) ( )1 2 3( )env h h hα ⊗ ⊗  

( ) ( )( )1 1
1 2 3 1 2 3( ) ( ) ( ) ,1 ( ) ( ) ( )h h h h h hτ τ τ τ τ τ τ τ− − − − − + + += + + − + +        . 

 

Since ( ) (1 )t s tτ = −  , and 1 1( ) 1 ( )t s tτ − −= −  , then  

 

( )1 2 3( )env h h hα ⊗ ⊗  

( ) ( )( )1 1
1 2 3 1 2 3( ) ( ) ( ) , (1 ) (1 ) (1 )h h h s s h s h s hτ τ τ τ− − − − − + + += + + − + − + −         

 
On the other hand, we have 

 

( )1 2 3( ) ( ) ( )env env envh h hα α α⊗ ⊗ ( )1 1 2 2 3 3( ,1 ) ( ,1 ) ( ,1 )h h h h h h− + − + − += − ⊗ − ⊗ −  

( ) ( )( )1 1
1 1 2 3 2 3( ,1 ) ( ) ( ) , (1 ) (1 )h h h h s s h s hτ τ τ− + − − − − + += − ⊗ + − + −       
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( ) ( )( )1 1
1 2 3 1 2 3( ) ( ) ( ) , (1 ) (1 ) (1 )h h h s s h s h s hτ τ τ τ− − − − − + + += + + − + − + −         

 
which derives that  

 

( ) ( )1 2 3 1 2 3( ) ( ) ( ) ( )env env env envh h h h h hα α α α⊗ ⊗ = ⊗ ⊗  

 
Theorem 1.15 (Xia and Xu 2012a).  Let 1h , 2h  and 3h  be three HFEs, then 

(1) 1 2 3 1 3 2 3( ) ( ) ( )h h h h h h h⊕ = ⊕ ⊕  . 

(2) 1 2 3 1 3 2 3( ) ( ) ( )h h h h h h h⊕ = ⊕ ⊕  . 

(3) 1 2 3 1 3 2 3( ) ( ) ( )h h h h h h h⊗ = ⊗ ⊗  . 

(4) 1 2 3 1 3 2 3( ) ( ) ( )h h h h h h h⊗ = ⊗ ⊗  . 

(5) 1 2 3 1 2 1 3( ) ( ) ( )h h h h h h h⊕ = ⊕ ⊕  . 

(6) 1 2 3 1 2 1 3( ) ( ) ( )h h h h h h h⊕ = ⊕ ⊕  . 

(7) 1 2 3 1 2 1 3( ) ( ) ( )h h h h h h h⊗ = ⊗ ⊗  . 

(8) 1 2 3 1 2 1 3( ) ( ) ( )h h h h h h h⊗ = ⊗ ⊗  . 

 
Proof.  In the following, we prove (1), (3), (5) and (7), others can be proven 
similarly: 

 
(1) 

1 1 2 2
1 2 3 1 2 3

,
( ) max{ , }

h h
h h h h

γ γ
γ γ

∈ ∈
⊕ = ⊕   

( )
1 1 2 2 3 3

1
1 2 3

, ,
(max{ , }) ( )

h h h
s s s

γ γ γ
γ γ γ−

∈ ∈ ∈
= +    

{ }( )
1 1 2 2 3 3

1
1 3 2 3

, ,
max ( ) ( ), ( ) ( )

h h h
s s s s s

γ γ γ
γ γ γ γ−

∈ ∈ ∈
= + +     

( ) ( ){ }( )
1 1 2 2 3 3

1 1
1 3 2 3

, ,
max ( ) ( ) , ( ) ( )

h h h
s s s s s s

γ γ γ
γ γ γ γ− −

∈ ∈ ∈
= + +       

( ){ } ( ){ }
1 1 3 3 2 2 3 3

1 1
1 3 2 3

, ,
( ) ( ) ( ) ( )

h h h h
s s s s s s

γ γ γ γ
γ γ γ γ− −

∈ ∈ ∈ ∈

   = + +   
   

         

1 3 2 3( ) ( )h h h h= ⊕ ⊕ . 

(3) 
1 1 2 2

1 2 3 1 2 3
,

( ) max{ , }
h h

h h h h
γ γ

γ γ
∈ ∈

 ⊗ = ⊗ 
 

   

( )
1 1 2 2 3 3

1
1 2 3

, ,
(max{ , }) ( )

h h hγ γ γ
τ τ γ γ τ γ−

∈ ∈ ∈
= +  
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{ }( )
1 1 2 2 3 3

1
1 3 2 3

, ,
max ( ) ( ), ( ) ( )

h h hγ γ γ
τ τ γ τ γ τ γ τ γ−

∈ ∈ ∈
= + +      

( ) ( ){ }( )
1 1 2 2 3 3

1 1
1 3 2 3

, ,
max ( ) ( ) , ( ) ( )

h h hγ γ γ
τ τ γ τ γ τ τ γ τ γ− −

∈ ∈ ∈
= + +       

( ){ } ( ){ }
1 1 3 3 2 2 3 3

1 1
1 3 2 3

, ,
( ) ( ) ( ) ( )

h h h hγ γ γ γ
τ τ γ τ γ τ τ γ τ γ− −

∈ ∈ ∈ ∈

   = + +   
   

         

1 3 2 3( ) ( )h h h h= ⊗ ⊗ .  

 

(5) 
2 2 3 3

1 2 3 1 2 3
,

( ) max{ , }
h h

h h h h
γ γ

γ γ
∈ ∈

 ⊕ = ⊕  
 

   

( )( )
1 1 2 2 3 3

1
1 2 3

, ,
( ) max{ , }

h h h
s s s

γ γ γ
γ γ γ−

∈ ∈ ∈
= +    

{ }( )
1 1 2 2 3 3

1
1 2 1 3

, ,
max ( ) ( ), ( ) ( )

h h h
s s s s s

γ γ γ
γ γ γ γ−

∈ ∈ ∈
= + +      

( ) ( ){ }( )
1 1 2 2 3 3

1 1
1 2 1 3

, ,
max ( ) ( ) , ( ) ( )

h h h
s s s s s s

γ γ γ
γ γ γ γ− −

∈ ∈ ∈
= + +       

( ){ } ( ){ }
1 1 2 2 1 1 3 3

1 1
1 2 1 3

, ,
( ) ( ) ( ) ( )

h h h h
s s s s s s

γ γ γ γ
γ γ γ γ− −

∈ ∈ ∈ ∈

  = + +   
   

         

1 3 1 2( ) ( )h h h h= ⊕ ⊕ . 

(7) 
2 2 3 3

1 2 3 1 2 3
,

( ) max{ , }
h h

h h h h
γ γ

γ γ
∈ ∈

 ⊗ = ⊗  
 

   

( )( )
1 1 2 2 3 3

1
1 2 3

, ,
( ) max{ , }

h h hγ γ γ
τ τ γ τ γ γ−

∈ ∈ ∈
= +    

{ }( )
1 1 2 2 3 3

1
1 2 1 3

, ,
max ( ) ( ), ( ) ( )

h h hγ γ γ
τ τ γ τ γ τ γ τ γ−

∈ ∈ ∈
= + +      

( ) ( ){ }( )
1 1 2 2 3 3

1 1
1 2 1 3

, ,
max ( ) ( ) , ( ) ( )

h h hγ γ γ
τ τ γ τ γ τ τ γ τ γ− −

∈ ∈ ∈
= + +       

( ){ } ( ){ }
1 1 2 2 1 1 3 3

1 1
1 2 1 3

, ,
( ) ( ) ( ) ( )

h h h hγ γ γ γ
τ τ γ τ γ τ τ γ τ γ− −

∈ ∈ ∈ ∈

  = + +   
   

         

1 3 1 2( ) ( )h h h h= ⊗ ⊗ . 
 

Theorem 1.16 (Xia and Xu 2012a).  Let 1h , 2h  and 3h  be three HFEs, then 

(1) ( )1 2 3 1 3 2 3( ) ( ) ( )env env evnh h h h h h hα α α⊕ = ⊕ ⊕  . 

(2) ( )1 2 3 1 3 2 3( ) ( ) ( )env env evnh h h h h h hα α α⊕ = ⊕ ⊕  . 

(3) ( )1 2 3 1 3 2 3( ) ( ) ( )env env evnh h h h h h hα α α⊗ = ⊗ ⊗  . 



1.1   Hesitant Fuzzy Elements 25 

 

(4) ( )1 2 3 1 3 2 3( ) ( ) ( )env env envh h h h h h hα α α⊗ = ⊗ ⊗  . 

(5) ( )1 2 3 1 2 1 3( ) ( ) ( )env env evnh h h h h h hα α α⊕ = ⊕ ⊕  . 

(6) ( )1 2 3 1 2 1 3( ) ( ) ( )env env envh h h h h h hα α α⊕ = ⊕ ⊕  . 

(7) ( )1 2 3 1 2 1 3( ) ( ) ( )env env envh h h h h h hα α α⊗ = ⊗ ⊗  . 

(8) ( )1 2 3 1 2 1 3( ) ( ) ( )env env envh h h h h h hα α α⊗ = ⊗ ⊗  . 

(9) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊕ = ⊕  . 

(10) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊕ = ⊕  . 

(11) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊗ = ⊗  . 

(12) ( ) ( )1 2 3 1 2 3( ) ( )env envh h h h h hα α⊗ = ⊗  . 

(13) 1 3 2 3 1 2 1 3( ) ( ) ( ) ( )env env env evnh h h h h h h hα α α α⊕ ⊕ = ⊕ ⊕  . 

(14) 1 3 2 3 1 2 1 3( ) ( ) ( ) ( )env env env evnh h h h h h h hα α α α⊕ ⊕ = ⊕ ⊕  . 

(15) 1 3 2 3 1 2 1 3( ) ( ) ( ) ( )env env env evnh h h h h h h hα α α α⊗ ⊗ = ⊗ ⊗  . 

(16) 1 3 2 3 1 2 1 3( ) ( ) ( ) ( )env env env evnh h h h h h h hα α α α⊗ ⊗ = ⊗ ⊗  . 

 
Proof.  We prove (1) and (3), others can be proven analogously: 

 

(1) ( ) ( )( ){ }
1 1 2 2 3 3

1
1 2 3 1 2 3

, ,
( ) max{ , } ( )env env

h h h
h h h s s s

γ γ γ
α α γ γ γ−

∈ ∈ ∈

 ⊕ = + 
 

     

( ) ( ){ }
1 1 2 2 3 3

1 1
1 3 2 3

, ,
max ( ) ( ) , ( ) ( )env

h h h
s s s s s s

γ γ γ
α γ γ γ γ− −

∈ ∈ ∈

 = + + 
 

      

( ) ( ){ }( 1 1
1 3 2 3max ( ) ( ) , ( ) ( ) ,s s h s h s s h s h− − − − − −= + +        

( ) ( ){ })1 1
1 3 2 31 max ( ) ( ) , ( ) ( )s s h s h s s h s h− + + − + +− + +       

( ) ( ){ }( 1 1
1 3 2 3max ( ) ( ) , ( ) ( ) ,s s h s h s s h s h− − − − − −= + +           

( ) ( ){ })1 1
1 3 2 3min (1 ) (1 ) , (1 ) (1 )h h h hτ τ τ τ τ τ− + + − + +− + − − + −       

( ) ( )( )1 1
1 3 1 3( ) ( ) , (1 ) (1 )s s h s h h hτ τ τ− − − − + += + − + −       

( ) ( )( )1 1
2 3 2 3( ) ( ) , (1 ) (1 )s s h s h h hτ τ τ− − − − + ++ − + −       

( ) ( )( )1 1
1 3 1 3( ) ( ) ,1 ( ) ( )s s h s h s s h s h− − − − + += + − +       
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( ) ( )( )1 1
2 3 2 3( ) ( ) ,1 ( ) ( )s s h s h s s h s h− − − − + ++ − +      

1 3 2 3( ) ( )env evnh h h hα α= ⊕ ⊕ . 

 

(3) ( ) ( ){ }
1 1 2 2 3 3

1
1 2 3 1 2 3

, ,
( ) (max{ , }) ( )env env

h h h
h h h

γ γ γ
α α τ τ γ γ τ γ−

∈ ∈ ∈

 ⊗ = + 
 

     

( ) ( ){ }
1 1 2 2 3 3

1 1
1 3 2 3

, ,
max ( ) ( ) , ( ) ( )env

h h hγ γ γ
α τ τ γ τ γ τ τ γ τ γ− −

∈ ∈ ∈

 = + + 
 

       

( ) ( ){ }( 1 1
1 3 2 3max ( ) ( ) , ( ) ( ) ,h h h hτ τ τ τ τ τ− − − − − −= + +        

( ) ( ){ })1 1
1 3 2 31 max ( ) ( ) , ( ) ( )h h h hτ τ τ τ τ τ− + + − + +− + +       

( ) ( ){ }( 1 1
1 3 2 3max ( ) ( ) , ( ) ( ) ,h h h hτ τ τ τ τ τ− − − − − −= + +        

( ) ( ){ })1 1
1 3 2 3min (1 ) (1 ) , (1 ) (1 )s s h s h s s h s h− + + − + +− + − − + −         

( ) ( )( )1 1
1 3 1 3( ) ( ) , (1 ) (1 )h h s s h s hτ τ τ− − − − + += + − + −       

( ) ( )( )1 1
2 3 2 3( ) ( ) , (1 ) (1 )h h s s h s hτ τ τ− − − − + ++ − + −       

( ) ( )( )1 1
1 3 1 3( ) ( ) ,1 ( ) ( )h h h hτ τ τ τ τ τ− − − − + += + − +       

( ) ( )( )1 1
2 3 2 3( ) ( ) ,1 ( ) ( )h h h hτ τ τ τ τ τ− − − − + ++ − +       

1 3 2 3( ) ( )env evnh h h hα α= ⊗ ⊗ . 

 
Theorem 1.17 (Xia and Xu 2012a).  Let 1h  and 2h  be two HFEs, then 

(1) 1 2 1 2 1 2( ) ( )h h h h h h⊕ = ⊕  . 

(2) 1 2 1 2 1 2( ) ( ) ( )h h h h h h⊗ = ⊗  . 

 
Proof.  (1) We know that for any two real numbers a  and b , it follows that: 

 
max{ , } min{ , }a b a b a b+ = + , max{ , } min{ , }a b a b a b⋅ = ⋅  

 
then we have 

 

1 1 2 2 1 1 2 2
1 2 1 2 1 2 1 2

, ,
( ) ( ) max{ , } min{ , }

h h h h
h h h h

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈

   ⊕ = ⊕   
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1 1 2 2 1 1 2 2
1 2 1 2

, ,
max{ , } min{ , }

h h h hγ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈

   = ⊕   
   
   

( ) ( )( )
1 1 2 2

1
1 2 1 2

,
max{ , } min{ , }

h h
s s s

γ γ
γ γ γ γ−

∈ ∈
= +    

{ } { }( ){ }
1 1 2 2

1
1 2 1 2

,
max ( ( ), ( ) min ( ), ( )

h h
s s s s s

γ γ
γ γ γ γ−

∈ ∈
= +      

( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

h h
s s s h h

γ γ
γ γ−

∈ ∈
= + = ⊕    

 

(2) 
1 1 2 2 1 1 2 2

1 2 1 2 1 2 1 2
, ,

( ) ( ) max{ , } min{ , }
h h h h

h h h h
γ γ γ γ

γ γ γ γ
∈ ∈ ∈ ∈

   ⊗ = ⊗   
   

     

1 1 2 2 1 1 2 2

1 2 1 2
, ,

max{ , } min{ , }
h h h hγ γ γ γ

γ γ γ γ
∈ ∈ ∈ ∈

   = ⊗   
   
   

( ) ( )( )
1 1 2 2

1
1 2 1 2

,
max{ , } min{ , }

h hγ γ
τ τ γ γ τ γ γ−

∈ ∈
= +    

{ } { }( ){ }
1 1 2 2

1
1 2 1 2

,
max ( ( ), ( ) min ( ), ( )

h hγ γ
τ τ γ τ γ τ γ τ γ−

∈ ∈
= +      

( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

h h
h h

γ γ
τ τ γ τ γ−

∈ ∈
= + = ⊗   . 

 
Theorem 1.18 (Xia and Xu 2012a).  Let 1h  and 2h  be two HFEs, then 

(1) 1 2 1 2 1 2( ) ( ) ( )env env envh h h h h hα α α⊕ = ⊕  . 

(2) 1 2 1 2 1 2( ) ( ) ( )env env envh h h h h hα α α⊗ = ⊗  . 

 
Proof. 

(1) 1 2 1 2( ) ( )env envh h h hα α⊕   

1 1 2 2 1 1 2 2

1 2 1 2
, ,

max{ , } min{ , }env env
h h h hγ γ γ γ

α γ γ α γ γ
∈ ∈ ∈ ∈

   = ⊕   
   
   

( ) ( )1 2 1 2 1 2 1 2max{ , },1 max{ , } min{ , },1 min{ , }h h h h h h h h− − + + − − + += − ⊕ −  

    

( ) ( )1 2 1 2 1 2 1 2max{ , }, min{1 ,1 } min{ , }, max{1 ,1 }h h h h h h h h− − + + − − + += − − ⊕ − −  

( ) ( )( )( 1
1 2 1 2max{ , } min{ , } ,s s h h s h h− − − − −= +    

( ) ( )( )1
1 2 1 2min{1 ,1 } max{1 ,1 }h h h hτ τ τ− + + + +− − + − −    
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{ } { }( )( 1
1 2 1 2max ( ), ( ) min ( ), ( ) ,s s h s h s h s h− − − − −= +          

{ } { }( ))1
1 2 1 2min (1 ), (1 ) max (1 ), (1 )h h h hτ τ τ τ τ− + + + +− − + − −      

( ) ( )( )1 1
1 2 1 2( ) ( ) , (1 ) (1 )s s h s h h hτ τ τ− − − − + += + − + −       

( ) ( )( )1 1
1 2 1 2 1 2( ) ( ) ,1 ( ) ( ) ( )envs s h s h s s h s h h hα− − − − + += + − + = ⊕      . 

(2) 1 2 1 2( ) ( )env envh h h hα α⊗   

1 1 2 2 1 1 2 2

1 2 1 2
, ,

max{ , } min{ , }env env
h h h hγ γ γ γ

α γ γ α γ γ
∈ ∈ ∈ ∈

   = ⊗   
   
   

( ) ( )1 2 1 2 1 2 1 2max{ , },1 max{ , } min{ , },1 min{ , }h h h h h h h h− − + + − − + += − ⊗ −  

    

( ) ( )1 2 1 2 1 2 1 2max{ , }, min{1 ,1 } min{ , },max{1 ,1 }h h h h h h h h− − + + − − + += − − ⊗ − −  

( ) ( )( )( 1
1 2 1 2max{ , } min{ , } ,h h h hτ τ τ− − − − −= +    

( ) ( )( ))1
1 2 1 2min{1 ,1 } max{1 ,1 }s s h h s h h− + + + +− − + − −    

{ } { }( )( 1
1 2 1 2max ( ), ( ) min ( ), ( ) ,h h h hτ τ τ τ τ− − − − −= +      

{ } { }( ))1
1 2 1 2min (1 ), (1 ) max (1 ), (1 )s s h s h s h s h− + + + +− − + − −      

( ) ( )( )1 1
1 2 1 2( ) ( ) , (1 ) (1 )h h s s h s hτ τ τ− − − − + += + − + −       

( ) ( )( )1 1
1 2 1 2 1 2( ) ( ) ,1 ( ) ( ) ( )envh h h h h hτ τ τ τ τ τ α− − − − + += + − + = ⊗      . 

 
Theorem 1.19 (Xia and Xu 2012a).  Let 1h  and 2h  be two HFEs, and 0λ > , 

then 

(1) 1 2 1 2( )h h h hλ λ λ=  . 

(2) 1 2 1 2( )h h h hλ λ λ=  . 

(3) 1 2 1 2( )h h h hλ λ λ=  . 

(4) 1 2 1 2( )h h h hλ λ λ=  . 

(5) 1 2 1 2( )h h h hλ λ λ⊕ = ⊕ . 

(6) 1 2 1 2( )h h h hλ λ λ⊗ = ⊗ . 

 



1.1   Hesitant Fuzzy Elements 29 

 

Proof.  In the following, we prove (1), (3) and (5), others can be proven 
analogously: 

 

(1) 
1 1 2 2 1 1 2 2

1
1 2 1 2 1 2

, ,
( ) max{ , } max{ , }

h h h h
h h s s

γ γ γ γ
λ λ γ γ λ γ γ−

∈ ∈ ∈ ∈

    = =        
     

( ) ( ){ }
1 1 2 2

1 1
1 2 1 2

,
max ( ) , ( )

h h
s s s s h h

γ γ
λ γ λ γ λ λ− −

∈ ∈
= =     . 

(3) 
1 1 2 2 1 1 2 2

1
1 2 1 2 1 2

, ,
( ) max{ , } max{ , }

h h h h
h h

λ
λ

γ γ γ γ
γ γ τ λτ γ γ−

∈ ∈ ∈ ∈

    = =        
     

( ) ( ){ }
1 1 2 2

1 1
1 2 1 2

,
max ( ) , ( )

h h
h hλ λ

γ γ
τ λτ γ τ λτ γ− −

∈ ∈
= =     . 

(5) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( ) ( )

h h
h h s s s

γ γ
λ λ γ γ−

∈ ∈

 ⊕ = + 
 

   . 

( )( ){ }
1 1 2 2

1 1
1 2

,
( ( ) ( ))

h h
s s s s s

γ γ
λ γ γ− −

∈ ∈
= +      

( ){ }
1 1 2 2

1
1 2

,
( ( ) ( ))

h h
s s s

γ γ
λ γ γ−

∈ ∈
= +    

( )( ) ( )( )( ){ }
1 1 2 2

1 1 1
1 2

,
( ( ) ( ( ))

h h
s s s s s s s

γ γ
λ γ λ γ− − −

∈ ∈
= +        

1 2h hλ λ= ⊕ . 

     

Theorem 1.20 (Xia and Xu 2012a).  Let 1h  and 2h  be two HFEs, then 

 

(1) ( )1 2 1 2( ) ( ) ( )env env envh h h hα λ α λ α λ=  . 

(2) ( )1 2 1 2( ) ( ) ( )env env envh h h hα λ α λ α λ=  . 

(3) ( ) ( ) ( )1 2 1 2( )env env envh h h hλ λ λα α α=  . 

(4) ( ) ( ) ( )1 2 1 2( )env env envh h h hλ λ λα α α=  . 

(5) ( )1 2 1 2( ) ( ) ( )env env envh h h hα λ α λ α λ⊕ = ⊕ . 

(6) ( ) ( ) ( )1 2 1 2( )env env envh h h hλ λ λα α α⊗ = ⊗ . 

 
Proof.  In the following, we prove (1), (3) and (5), others can be proven 
analogously: 

 

(1) ( ) ( ) ( ){ }
1 1 2 2

1 1
1 2 1 2

,
( ) max ( ) , ( )env env

h h
h h s s s s

γ γ
α λ α λ γ λ γ− −

∈ ∈

 =  
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( ) ( ){ } ( ) ( ){ }( )1 1 1 1
1 2 1 2max ( ) , ( ) ,1 max ( ) , ( )s s h s s h s s h s s hλ λ λ λ− − − − − + − += −         

( ) ( ){ } ( ) ( ){ }( )1 1 1 1
1 2 1 2max ( ) , ( ) ,min (1 ) , (1 )s s h s s h h hλ λ τ λτ τ λτ− − − − − + − += − −         

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ) , (1 ) ( ) , (1 )s s h h s s h hλ τ λτ λ τ λτ− − − + − − − += − −         

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ) ,1 ( ) ( ) ,1 ( )s s h s s h s s h s s hλ λ λ λ− − − + − − − += − −         

1 2( ) ( )env envh hα λ α λ=  . 

(3) ( ) ( ) ( ){ }
1 1 2 2

1 1
1 2 1 2

,
( ) max ( ) , ( )env env

h h
h h λ

γ γ
α α τ λτ γ τ λτ γ− −

∈ ∈

 =  
 

      

( ) ( ){ } ( ) ( ){ }( )1 1 1 1
1 2 1 2max ( ) , ( ) ,1 max ( ) , ( )h h h hτ λτ τ λτ τ λτ τ λτ− − − − − + − += −         

( ) ( ){ } ( ) ( ){ }( )1 1 1 1
1 2 1 2max ( ) , ( ) ,min (1 ) , (1 )h h s s h s s hτ λτ τ λτ λ λ− − − − − + − += − −         

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ) , (1 ) ( ) , (1 )h s s h h s s hτ λτ λ τ λτ λ− − − + − − − += − −         

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ,1 ( ) ( ) ,1 ( )h h h hτ λτ τ λτ τ λτ τ λτ− − − + − − − += − −        . 

( ) ( )1 2env envh hλ λα α=   

 

(5) ( ) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( ( ) ( ))env env

h h
h h s s s

γ γ
α λ α λ γ γ−

∈ ∈

 ⊕ = + 
 

    

( ) ( )( )1 1
1 2 1 2( ( ) ( )) ,1 ( ( ) ( ))s s h s h s s h s hλ λ− − − − + += + − +       

( ) ( )( )( )1 1
1 2 1 2( ( ) ( )) , (1 ) (1 )s s h s h h hλ τ λ τ τ− − − − + += + − + −       

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ( )) , ( (1 )) ( ( )) , ( (1 ))s s h h s s h hλ τ λ τ λ τ λ τ− − − + − − − += − + −         

( ) ( )( ) ( ) ( )( )1 1 1 1
1 1 2 2( ( )) ,1 ( ( )) ( ( )) ,1 ( ( ))s s h s s h s s h s s hλ λ λ λ− − − + − − − += − + −         

1 2( ) ( )env envh hα λ α λ= ⊕ . 

1.2   Hesitant Fuzzy Aggregation Operators 

In the previous section, we have revealed the relations between HFEs and IFNs. 
Recently, lots of operators have been developed for aggregating IFNs, such as the 
intuitionistic fuzzy weighted averaging (IFWA) operator, the intuitionistic fuzzy 
weighted geometric (IFWG) operator, the intuitionistic fuzzy ordered weighted 
averaging (IFOWA) operator, the intuitionistic fuzzy ordered weighted geometric 
(IFOWG) operator, the intuitionistic fuzzy hybrid averaging (IFHA) operator, the 
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intuitionistic fuzzy hybrid geometric (IFHG) operator, and the generalized 
intuitionistic fuzzy ordered weighted averaging (GIFOWA) operator, etc. In the 
following, we first review some common intuitionistic fuzzy aggregation 
operators:   

For a collection of IFNs ( , ) ( 1,2, , )i i iv i nα μ= =  , where , [0,1]i ivμ ∈ , 

and 1i ivμ + ≤ , 1, 2, ,i n=  , then 

 
(1) The intuitionistic fuzzy weighted averaging (IFWA) operator (Xu 2007a): 

 

IFWA 1 2( , , , )nα α α
1

1 1

1 (1 ) ,i i

i i

n nn
w w

i i
i

i i

w vα αα μ
= = =

 = ⊕ = − − 
 

∏ ∏       (1.24) 

 

where 1 2( , , , )nw w w w Τ=   is the weight vector of 1 2( , , , )nα α α  with 

[0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= . 

 
(2) The intuitionistic fuzzy weighted geometric (IFWG) operator (Xu and Yager 
2006): 

 

IFWG 1 2( , , , )nα α α
1

1 1

,1 (1 )i i i

i i

n nn
w w w
i

i
i i

vα αα μ
= = =

 = ⊗ = − − 
 
∏ ∏        (1.25) 

 

where 1 2( , , , )nw w w w Τ=   is the weight vector of 1 2( , , , )nα α α  with 

[0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= . 

 
(3) The intuitionistic fuzzy ordered weighted averaging (IFOWA) operator (Xu 
2007a): 

  

IFOWA 1 2( , , , )nα α α
( ) ( )( )

1
1 1

1 (1 ) ,i i

i i

n nn

i i
i

i i

v
σ σ

ω ω
σ α αω α μ

= = =

 = ⊕ = − − 
 

∏ ∏   (1.26) 

 

where ( )iσα  is the i th largest of ( 1,2, , )i i nα =  , and 1 2( , , , )nω ω ω ω Τ=   

is the aggregation-associated vector such that [0,1]iω ∈ , 1,2, ,i n=  , and 

1

1
n

i
i

ω
=

= . 
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(4) The intuitionistic fuzzy ordered weighted geometric (IFOWG) operator (Xu 
and Yager 2006): 

 

IFOWG 1 2( , , , )nα α α ( )( ) ( )( )
1

1 1

,1 1
i

i i

i i

n nn

i
i

i i

v
σ σ

ωω ω
σ α αα μ

= = =

 = ⊕ = − − 
 
∏ ∏    (1.27)       

 

where ( )iσα  is the i th largest of ( 1,2, , )i i nα =  , and 1 2( , , , )nω ω ω ω Τ=   is 

the aggregation-associated vector such that [0,1]iω ∈ , 1,2, ,i n=  , and 

1

1
n

i
i

ω
=

= . 

 
(5) The intuitionistic fuzzy hybrid averaging (IFHA) operator (Xu 2007a): 

 

IFHA 1 2( , , , )nα α α ( )( ) ( )( )
1

1 1

1 1 ,
i

i

i i

n nn

i i
i

i i

v
σ σ

ω ω
σ α αω α μ

= = =

 = ⊕ = − − 
 

∏ ∏      (1.28)          

 

where ( )iσα  is the i th largest of ( 1,2, , )i i inw i nα α= =  , 

1 2( , , , )nw w w w Τ=   is the weight vector of 1 2( , , , )nα α α  with [0,1]iw ∈ , 

1, 2, ,i n=  , 
1

1
n

i
i

w
=

= , and 1 2( , , , )nω ω ω ω Τ=   is the aggregation-

associated vector such that [0,1]iω ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

ω
=

= .  

 
(6) The intuitionistic fuzzy hybrid geometric (IFHG) operator (Xu and Yager 
2006):  

IFHG 1 2( , , , )nα α α ( )( ) ( )( )
1

1 1

,1 1
i

i i

i i

n nn

i
i

i i

v
σ σ

ωω ω
σ α αα μ

= = =

 = ⊕ = − − 
 
∏ ∏       (1.29)            

where ( )iσα  is the i th largest of ( 1, 2, , )inw
i i i nα α= =  , 

1 2( , , , )nw w w w Τ=   is the weight vector of 1 2( , , , )nα α α  with 

[0,1]iw ∈ , 1,2, ,i n=  , 
1

1
n

i
i

w
=

= , and 1 2( , , , )nω ω ω ω Τ=   is the 

aggregation-associated vector such that [0,1]iω ∈ , 1, 2, ,i n=  , and 

1

1
n

i
i

ω
=

= .  
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Yager (2004a) defined a generalized ordered weighted averaging (GOWA) 
operator, Zhao et al. (2010) extended it to accommodate the situations where the 
input arguments are IFNs. 

     
Definition 1.14 (Zhao et al. 2010).  A generalized intuitionistic fuzzy ordered 
weighted averaging (GIFOWA) operator of dimension n  has the following form:  

     

GIFOWA 1 2( , , , )nα α α
1

( )
1

n

i i
i

λλ
σω α

=

 = ⊕ 
 

   

( ) ( )( ) ( )

11

1 1

1 1 ,1 1 1 1
i

i

i i

n n

i i

v
σ σ

ω λλω λλ
α αμ

= =

 
     = − − − − − −         

 
∏ ∏      (1.30)             

     

where 0λ > , 1 2( , ,..., )nω ω ω ω Τ=  is the weighting vector associated with the 

GIFOWA operator with [0,1]iω ∈ , 1,2, ...,i n=  and 
1

1
n

i
i

ω
=

= , and ( )iσα  

is the i th largest of iα ( 1,2,...,i n= ). 

Furthermore, Torra and Narukawa (2009) proposed an aggregation principle for 
HFEs: 

     

Definition 1.15 (Torra and Narukawa 2009).  Let 1 2{ , , , }nA h h h=   be a set of 

n  HFEs, ϑ  a function on A , ϑ : [0,1] [0,1]n → , then 

     

                      
{ }

{ }
1 2

( )
n

A
h h hγ

ϑ ϑ γ
∈ × × ×

=

                                      (1.31)  

     
Based on Definition 1.15 and the given operations for HFEs, below we will 

introduce a series of specific aggregation operators for HFEs, and investigate their 
desirable properties: 

     

Definition 1.16 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs. A hesitant fuzzy weighted averaging (HFWA) operator is a mapping 
nΘ → Θ  such that  

     

HFWA 1 2( , , , )nh h h =
1 1 2 2

1 , , , 1

1 (1 ) i

n n

nn
w

i i i
i h h h i

w h
γ γ γ

γ
= ∈ ∈ ∈ =

 ⊕ = − − 
 

∏

    (1.32) 
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where 1 2( , , , )nw w w w Τ=   is the weight vector of ih ( 1, 2, , )i n=   with 

[0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= . Especially, if 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , 

then the HFWA operator reduces to the hesitant fuzzy averaging (HFA) operator: 
     

HFA 1 2( , , , )nh h h =
1 1 2 2

1

1 , , , 1

1
1 (1 )

n n

nn
n

i i
i h h h i

h
n γ γ γ

γ
= ∈ ∈ ∈ =

 
⊕ = − − 

 
∏


       (1.33)  

     

Definition 1.17 (Xia and Xu 2011a).  Let jh ( 1, 2, ,j n=  ) be a collection of 

HFEs and let HFWG: nΘ → Θ , if  
     

HFWG 1 2( , , , )nh h h =
1 1 2 2

1 , , , 1

i i

n n

nn
w w
i i

i h h h i

h
γ γ γ

γ
= ∈ ∈ ∈ =

 ⊗ =  
 
∏


             (1.34) 

     
then HFWG is called a hesitant fuzzy weighted geometric (HFWG) operator, 

where 1 2( , , , )nw w w w Τ=   is the weight vector of ih ( 1, 2, , )i n=    

with [0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= . In the case where 

1 1 1
, , ,w

n n n

Τ
 =  
 

 , the HFWA operator reduces to the hesitant fuzzy 

geometric (HFG) operator: 
     

        HFG 1 2( , , , )nh h h =
1 1 2 2

1 1

1 , , , 1n n

nn
n n

i i
i h h h i

h
γ γ γ

γ
= ∈ ∈ ∈ =

 
⊗ =  

 
∏


             (1.35) 

     
Lemma 1.1 (Xu 2000; Torra and Narukawa 2007). Let 0ix > , 0iλ > , 1, 2,i =  

, n , and 
1

1
n

i
i

λ
=

= , then 

11

i

n n

i i i
ii

x xλ λ
==

≤∏                                                  (1.36) 

     
with equality if and only if 1 2 nx x x= = = . 
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Theorem 1.21 (Xia and Xu 2011a).  Assume that ih ( 1, 2, ,i n=  ) is a 

collection of HFEs, whose weight vector is 1 2( , , , )nw w w w Τ=  , with 

[0,1]iw ∈ , 1, 2,i =  , n , and 
1

1
n

i
i

w
=

= , then  

HFWG 1 2( , , , )nh h h ≤ HFWA 1 2( , , , )nh h h                  (1.37)          

     

Proof.  For any 1 1 2 2, , , n nh h hγ γ γ∈ ∈ ∈ , based on Lemma 1.1, we have  

     

           
1 11 1

1 (1 ) 1 (1 )i i

n nn n
w w
i i i i i i

i ii i

w wγ γ γ γ
= == =

≤ = − − ≤ − − ∏ ∏       (1.38)   

     

which implies that 
1 1

i

n n
w
i i i

i i
h w h

= =
⊗ ≤ ⊕ . 

Theorem 1.21 shows that the values obtained by the HFWG operator are not 
bigger than the ones obtained by the HFWA operator.  

     
Definition 1.18 (Xia and Xu 2011a).  For a collection of the HFEs 

ih ( 1, 2, ,i n=  ), a generalized hesitant fuzzy weighted averaging (GHFWA) 

operator is a mapping GHFWA: nΘ → Θ  such that 
     

GHFWA 1 2( , , , )nh h hλ   

( )
1 1 2 2

11

1 , , , 1

1 1
i

n n

nn w

i i i
i h h h i

w h
λλλ λ

γ γ γ
γ

= ∈ ∈ ∈ =

 
   = ⊕ = − −         

∏

        (1.39)   

     

where 1 2( , )nw w w w Τ=   is the weight vector of ih ( 1,2, , )i n=  , with 

[0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= . Especially, if 1λ = , then the 

GHFWA operator reduces to the HFWA operator; If 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , then 

the GHFWA operator reduces to the GHFA operator . 
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Theorem 1.22 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs having the weight vector 1 2( , )nw w w w Τ=   such that [0,1]iw ∈ , 

1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= , 0λ > , then  

     

        HFWG 1 2( , , , )nh h h ≤ GHFWA 1 2( , , , )nh h hλ                    (1.40) 

     

Proof.  For any 1 1 2 2, , , n nh h hγ γ γ∈ ∈ ∈ , based on Lemma 1.1, we have  

     
1 1

11 1

( )i i

n n n
w w
i i i i

ii i

w
λ λλ λγ γ γ

== =

   = ≤   
  
∏ ∏  

( ) ( )
11

1 1

1 1 1 1
i

nn w

i i i
i i

w
λλλ λγ γ

= =

  = − − ≤ − −  
   
 ∏                (1.41) 

     

which implies that 

1

1 1

i

n n
w
i i i

i i
h w h

λλ

= =

 ⊗ ≤ ⊕ 
 

, and completes the proof of the 

theorem. 
From Theorem 1.21, we can conclude that the values obtained by the HFWG 

operator are not bigger than the ones obtained by the GHFWA operator for any 
0λ > . 
     

Definition 1.19 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs having the weight vector 1 2( , )nw w w w Τ=   such that [0,1]iw ∈ , 

1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= , 0λ > . A generalized hesitant fuzzy weighted 

geometric (GHFWG) operator is a mapping nΘ → Θ , and 
     

GHFWG 1 2( , , , )nh h hλ =
1

1
( ) i

n
w

i
i

hλ
λ =

 ⊗ 
 

 

  ( )
1 1 2 2

1

, , , 1

1 1 1 (1 )
i

n n

n w

i
h h h i

λ
λ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − − − −  
   

∏

            (1.42) 
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Especially, if 1λ = , then the GHFWG operator becomes the HFWG operator; 

If 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , then the GHFWG operator reduces to the GHFG 

operator. 
     

Theorem 1.23 (Xia and Xu 2011a).  For a collection of HFEs ih ( 1, 2, ,i n=  ), 

1 2( , , , )nw w w w Τ=   is the weight vector such that [0,1]iw ∈ , 

1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= , 0λ > , then  

     

            GHFWG 1 2( , , , )nh h hλ ≤ HFWA 1 2( , , , )nh h h                  (1.43) 

     

Proof.  Let 1 1 2 2, , , n nh h hγ γ γ∈ ∈ ∈ , based on Lemma 1.1, we can obtain  

     

( ) ( )
1 1

11

1 1 1 (1 ) 1 1 1 (1 )
i

n nw

i i i
ii

w
λ λλ λγ γ

==

   − − − − ≤ − − − −   
  
∏  

11

1 1 1

1 (1 ) 1 (1 ) 1 (1 )i i

n nn
w w

i i i i
i i i

w
λλ λλγ γ γ

= = =

  = − − ≤ − − = − −  
   
 ∏ ∏   (1.44) 

     

which implies that 
1 1

1
( ) i

n n
w

i i i
i i

h w hλ
λ = =

 ⊗ ≤ ⊕ 
 

, and completes the proof of the 

theorem. 
Theorem 1.22 gives us the result that the values obtained by the GHFWG 

operator are not bigger than the ones obtained by the HFWA operator, no matter 
how the parameter λ ( 0)λ >  changes. 

     

Example 1.6 (Xia and Xu 2011a).  Let 1 {0.2,0.3,0.5}h =  and 

2 {0.4,0.6}h =  be two HFEs, and (0.7,0.3)w Τ=  their weight vector, then we 

have 
     

GHFWA1 1 2( , )h h = HFWA

1 1 2 2

222

1 2
1 ,1 1

( , ) 1 (1 ) iw
i i i

i h hi i

h h w h
γ γ

γ
= ∈ ∈= =

  = ⊕ = − −  
   
 ∏  
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{ 0.7 0.3 0.7 0.3 0.7 0.31 (1 0.2) (1 0.4) ,1 (1 0.2) (1 0.6) ,1 (1 0.3) (1 0.4) ,= − − × − − − × − − − × −  

     

}0.7 0.3 0.7 0.3 0.7 0.31 (1 0.3) (1 0.6) ,1 (1 0.5) (1 0.4) ,1 (1 0.5) (1 0.6)− − × − − − × − − − × −  

     
{0.2661,0.3316,0.3502,0.4082,0.4719,0.5324}=  

     

GHFWA6 ( )
1 1 2 2

11
22 666 6

1 2
1 , 1

( , ) 1 1
iw

i i i
i h h i

h h w h
γ γ

γ
= ∈ ∈ =

 
   = ⊕ = − −         

∏  

     

( ) ( )( ) ( ) ( )( )
1 1

0.7 0.3 0.7 0.36 66 6 6 61 1 0.2 1 0.4 , 1 1 0.2 1 0.6 ,
= − − × − − − × −


 

     

( ) ( )( )
1

0.7 0.3 66 61 1 0.3 1 0.4− − × − ( ) ( )( )
1

0.7 0.3 66 61 1 0.3 1 0.6 ,− − × −  

     

( ) ( )( ) ( ) ( )( )
1 1

0.7 0.3 0.7 0.36 66 6 6 61 1 0.5 1 0.4 , 1 1 0.5 1 0.6
− − × − − − × − 


 

     
{0.3293, 0.3468, 0.4707, 0.4925, 0.4951, 0.5409}=  

     

GHFWG1 1 2( , )h h = HFWG
1 1 2 2

22

1 2 ,
1

1

( , ) i iw w
i h h i

i
i

h h h γ γ γ∈ ∈= =

= ⊕ = ∏
      

{ 0.7 0.3 0.7 0.3 0.7 0.30.2 0.4 ,0.2 0.6 ,0.3 0.4 ,= × × × 0.7 0.30.3 0.6 ,×  

}0.7 0.3 0.7 0.30.5 0.4 ,0.5 0.6× ×  

     
{0.2462,0.2781,0.3270,0.3693,0.4676,0.5281}=  

     

GHFWG6 ( )
1 1 2 2

1
22 6

6
1 2

1 , 1

1
( , ) (6 ) 1 1 1 (1 )

6
i

i
ww

i i
i h h i

h h h
γ γ

γ
= ∈ ∈ =

 
   = ⊗ = − − − −         

∏  
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( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.2) 1 (1 0.4) ,
= − − − − × − −


 

( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.2) 1 (1 0.6) ,− − − − × − −  

( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.3) 1 (1 0.4) ,− − − − × − −  

( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.3) 1 (1 0.6)− − − − × − − , 

( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.5) 1 (1 0.4) ,− − − − × − −  

( ) ( )( )
1

0.7 0.3 66 61 1 1 (1 0.5) 1 (1 0.6)
− − − − × − − 


 

{0.2333,0.2400,0.3222,0.3369,0.4591,0.5203}=  

         
In the following, we discuss the relationships among the developed aggregation 

operators: 
     

Theorem 1.24 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs with the weight vector 1 2( , , , )nw w w w Τ=   such that [0,1]iw ∈ , 

1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= , 0λ > , then 

     

(1) 
1 1

i

cn n
wc

i i i
i i

w h h
= =

 ⊕ = ⊗ 
 

. 

     

(2) ( )
1 1

i

cn nwc
i i i

i i
h w h

= =

 ⊗ = ⊕ 
 

. 

     

(3) ( ) ( )
1

1 1

1 i

c
n n wc

i i i
i i

w h h
λλ

λ
λ= =

    ⊕ = ⊗        
. 
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(4) ( ) ( )
1

1 1

1 i

c

n nwc
i i i

i i
h w h

λλλ
λ = =

 
    ⊗ = ⊕       

 
. 

     

Proof.  (1) ( )
1 1 2 2

1 , , , 1

1 ( ) i

n n

nn
wc

i i i
i h h h i

w h
γ γ γ

γ
= ∈ ∈ ∈ =

 ⊕ = − 
 

∏

  

1 1 2 2
1, , , 1

( ) i i

n n

c cn n
w w

i i
ih h h i

h
γ γ γ

γ
=∈ ∈ ∈ =

    = = ⊗    
   

∏

 . 

     

(2) ( )
1 1 2 2

1 , , , 1

(1 )
i

i

n n

nn w wc
i i

i h h h i

h
γ γ γ

γ
= ∈ ∈ ∈ =

 ⊗ = − 
 
∏


  

          
1 1 2 2

1, , , 1

1 (1 ) i

n n

c cn n
w

i i i
ih h h i

w h
γ γ γ

γ
=∈ ∈ ∈ =

    = − − = ⊕    
   

∏

 . 

     

(3) ( )( ) ( )
1 1 2 2

11

1 , , , 1

1 1 (1 )
i

n n

nn wc
i i i

i h h h i

w h
λλλ λ

γ γ γ
γ

= ∈ ∈ ∈ =

 
   ⊕ = − − −         

∏

  

     

( ) ( )
1 1 2 2

1

1, , , 1

1
1 1 1 (1 )

i i

n n

c
cn nw w

i i
ih h h i

h
λ

λ

γ γ γ
γ λ

λ =∈ ∈ ∈ =

  
       = − − − − = ⊗               

∏



. 
     

(4) ( ) ( )
1 1 2 2

1

1 , , , 1

1
1 1 1

i i

n n

nn w wc
i i

i h h h i

h
λ

λ

γ γ γ
λ γ

λ = ∈ ∈ ∈ =

 
   ⊗ = − − −         

∏

  

     

( )
1 1 2 2

1 1

1, , , 1

1 1
i

n n

c

n nw

i i i
ih h h i

w h
λ λλ λ

γ γ γ
γ

=∈ ∈ ∈ =

  
     = − − = ⊕            

∏

 . 
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Theorem 1.25 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs associated with the weight vector 1 2( , , , )nw w w w Τ=   such that 

[0,1]iw ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

w
=

= , 0λ > , then 

     

(1) 
1 1

( )
n n

env i i i env i
i i

w h w hα α
= =

 ⊕ = ⊕ 
 

. 

     

(2) 
1 1

( )
n n

env i i i env i
i i

w h w hα α
= =

 ⊗ = ⊗ 
 

. 

     

(3) ( )
1 1

1 1
( ) ( )

n n

env i i i env i
i i

w h w h
λ λλλα α

= =

 
    ⊕ = ⊕       
 

. 

     

(4) ( ) ( )
1 1

1 1
( )i i

n nw w

env i env i
i i

h hα λ λα
λ λ= =

    ⊗ = ⊗        
. 

     

Proof.  (1) 
1 1 2 2

1 , , , 1

1 (1 ) i

n n

nn
w

env i i env i
i h h h i

w h
γ γ γ

α α γ
= ∈ ∈ ∈ =

   ⊕ = − −   
    

∏

  

1 1

1 (1 ) ,1 1 (1 )i i

n n
w w

i i
i i

h h− +

= =

  = − − − − −  
  

∏ ∏  

     

1 1

1 (1 ) , (1 )i i

n n
w w

i i
i i

h h− +

= =

 = − − − 
 

∏ ∏  

     

( )
1 1

( ,1 ) ( )
n n

i i i i env i
i i

w h h w hα− +

= =
= ⊕ − = ⊕ . 

     

(2) 
1 1 2 2

1 , , , 1

i i

n n

nn
w w

env i env i
i h h h i

h
γ γ γ

α α γ
= ∈ ∈ ∈ =

   ⊗ =    
    

∏
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1 1

( ) ,1 ( )i i

n n
w w

i i
i i

h h− +

= =

 = − 
 
∏ ∏

 

( )
1 1

( ) ,1 1 (1 )
i

i

n n ww
i i

i i

h h− +

= =

 = − − − 
 
∏ ∏  

     

( ) ( )
1 1

,1 ( )
i i

n nw w

i i env i
i i

h h hα− +

= =
= ⊗ − = ⊗ . 

     

(3) ( )
1 1 2 2

11

1 , , , 1

( ) 1 1
i

n n

nn w

env i i env i
i h h h i

w h
λλλ λ

γ γ γ
α α γ

= ∈ ∈ ∈ =

          ⊕ = − −               
∏


  

     

( ) ( )
1 1

1 1

1 1 ( ) ,1 1 1 ( )
i i

n nw w

i i
i i

h h
λ λ

λ λ− +

= =

 
    = − − − − −        
 

∏ ∏ . 

     

( ) ( )
1 1

1 1

1 1 ( ) ,1 1 1 (1 (1 ))
i i

n nw w

i i
i i

h h
λ λ

λ λ− +

= =

 
    = − − − − − − −        
 

∏ ∏  

     

( ) ( )
1 1

1 1
,1 ( )

n n

i i i i env i
i i

w h h w h
λ λλ λα− +

= =

   = ⊕ − = ⊕   
   

. 

     

(4) ( )
1 1 2 2

1

1 , , , 1

1
( ) 1 1 1 (1 )

i
i

n n

nn ww
env i env i

i h h h i

h
λ

λ

γ γ γ
α λ α γ

λ = ∈ ∈ ∈ =

  
       ⊗ = − − − −               

∏

  

     

( ) ( )
1 1

1 1

1 1 1 (1 ) , 1 1 (1 )
i i

n nw w

i i
i i

h h
λ λ

λ λ− +

= =

 
    = − − − − − − −        

 
∏ ∏  

     

( ) ( )
1 1

1 1
( ,1 ) ( )

i i

n nw w

i i env i
i i

h h hλ λα
λ λ

− +

= =

   = − =   
   
∏ ∏ . 
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Definition 1.20 (Xia and Xu 2011a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs, ( )ihσ  the i th largest of them, 1 2( , , , )nω ω ω ω Τ=   the aggregation-

associated vector such that [0,1]iω ∈ , 1, 2, ,i n=  , and 
1

1
n

i
i

ω
=

= , then  

     
(1) A hesitant fuzzy ordered weighted averaging (HFOWA) operator is a mapping 

HFOWA: nΘ → Θ , such that 
     

HFOWA 1 2( , , , )nh h h  

( )
(1) (1) ( 2) ( 2) ( ) ( )

( ) ( )
1 , , ,1 1

1 1
i

n n

nnn

i i i
i h h hi i

h
σ σ σ σ σ σ

ω
σ σ

γ γ γ
ω γ

= ∈ ∈ ∈= =

  = ⊕ = − −  
   
 ∏


      (1.45)      

         
(2) A hesitant fuzzy ordered weighted geometric (HFOWG) operator is a mapping 

HFOWG: nΘ → Θ , such that 

         
HFOWG 1 2( , , , )nh h h

 

(1) (1) ( 2) ( 2 ) ( ) ( )

( ) ( )
1 , , , 1

i i

n n

nn

i i
i h h h i

h
σ σ σ σ σ σ

ω ω
σ σ

γ γ γ
γ

= ∈ ∈ ∈ =

 = ⊗ =  
 
∏


                    (1.46)    

         
(3) A generalized hesitant fuzzy ordered weighted averaging (GHFOWA) operator 

is a mapping GHFOWA: nΘ → Θ , such that  
         

GHFOWA

1

1 2 ( )
1

( , , , )
n

n i i
i

h h h h
λλ

λ σω
=

 = ⊕ 
 

  

         

( )
(1) (1) ( 2) ( 2 ) ( ) ( )

1

( )
, , , 1

1 1
i

n n

n

i
h h h iσ σ σ σ σ σ

λωλ
σ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − −  
   

∏


              (1.47) 

         
with 0λ > . 

         
(4) A generalized hesitant fuzzy ordered weighted geometric (GHFOWG) 

operator is a mapping GHFOWG nΘ → Θ , such that 
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GHFOWG ( )1 2 ( )
1

1
( , , , )

i
n

n i
i

h h h h
ω

λ σλ
λ =

 = ⊗ 
 

  

         

( )
(1) (1) ( 2) ( 2 ) ( ) ( )

1

( )
, , , 1

1 1 1 (1 )
i

n n

n

i
h h h iσ σ σ σ σ σ

λωλ
σ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − − − −  
   

∏


            

         
with 0λ > . 

         

In the case where 
1 1 1

, ,
n n n

ω
Τ

 =  
 

 , the HFOWA operator reduces to the 

HFA operator, and the HFOWG operator becomes the HFG operator; In the case 
where 1λ = , the GHFOWA operator reduces to the HFOWA operator and the 
GHFOWG operator reduces to the HFOWG operator.  

The HFOWA, HFOWG, GHFOWA, and HFOWG operators are based on the 
idea of the ordered weighted averaging (OWA) operator (Yager 1988; Yager and  
Kacprzyk 1997) and the ordered weighted geometric (OWG) operator (Xu and Da 
2002a). The main characterization of the OWA operator is its reordering step. 
Several methods have been developed to obtain the OWA weights. Yager (1988) 
used the linguistic quantifiers to compute the OWA weights. O’Hagan (1988) 
generated the OWA weights with a predefined degree of orness by maximizing the 
entropy of the OWA weights. Filev and Yager (1998) obtained the OWA weights 
based on the exponential smoothing. Yager and Filev (1999) got the OWA 
weights from a collection of samples with the relevant aggregated data. Xu and Da 
(2002b) obtained the OWA weights under partial weight information by 
establishing a linear objective-programming model. Especially, based on the 
normal distribution (Gaussian distribution), Xu (2005a) developed a method to 
obtain the OWA weights, whose prominent characteristic is that it can relieve the 
influence of unfair arguments on the decision result by assigning low weights to 
those ‘‘false’’ or ‘‘biased’’ ones. 

         

Example 1.7 (Xia and Xu 2011a).  Let 1 {0.1,0.4}h = , 2 {0.3,0.5}h =  and 

3h =  {0.2,0.5,0.8}  be three HFEs, and suppose that the aggregation-associated 

vector is (0.25,0.4,0.35)ω Τ= , then we can calculate the scores of 1h , 2h  

and 3h : 

         

1

0.1 0.4
( ) 0.25

2
s h

+= = , 2

0.3 0.5
( ) 0.4

2
s h

+= =   
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3

0.2 0.5 0.8
( ) 0.5

3
s h

+ += =  

         
Since  

3 2 1( ) ( ) ( )s h s h s h> >  

         
then 

         

(1) 3 (0.2,0.5,0.8)h hσ = = , (2) 2 (0.3,0.5)h hσ = = , 

(3) 1 (0.1,0.4)h hσ = =  

         
we have  

         

GHFOWA1 1 2 3( , , )h h h = HFOWA
3

1 2 3 ( )
1

( , , ) i i
i

h h h hσω
=

= ⊕  

         

{ }
1 1 2 2 3 3

0.25 0.4 0.35
3 2 1

, ,
1 (1 ) (1 ) (1 )

h h hγ γ γ
γ γ γ

∈ ∈ ∈
= − − − −  

         
{0.2097,0.2973,0.3092,0.3143,0.3858,0.3903,0.4006,0.4412,=  

         
0.4671,0.5115,0.5151,0.5762} 

         

GHFOWA2

1
3 22

1 2 3 ( )
1

( , , ) i i
i

h h h hσω
=

 = ⊕ 
 

 

         

( ) ( ) ( )( )
1 1 2 2 3 3

1
0.25 0.4 0.35 22 2 2

3 2 1
, ,

1 1 1 1
h h hγ γ γ

γ γ γ
∈ ∈ ∈

  = − − − − 
  

  

         
{0.2239,0.3213,0.3271,0.3476,0.3961,0.4123,0.4165,0.4687,=  

         
0.5067,0.5461,0.5586,0.5920} 

         

GHFOWG1 1 2 3( , , )h h h = HFOWG
3

1 2 3 ( )
1

( , , ) i
i

i
h h h hω

σ=
= ⊕  
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{ }
1 1 2 2 3 3

0.25 0.4 0.35
3 2 1

, ,h h hγ γ γ
γ γ γ

∈ ∈ ∈
=   

         
{0.1845,0.2264,0.2321,0.2610,0.2847,0.2998,0.3202,0.3678,=  

         
0.3770,0.4240,0.4624,0.5201} 

GHFWG2 ( )3

1 2 3 ( )
1

1
( , , ) 2

2
i

i
i

h h h h
ω

σ=

 = ⊗ 
 

 

         

( ) ( ) ( )( )
1 1 2 2 3 3

1
0.25 0.4 0.35 22 2 2

3 2 1
, ,

1 1 1 (1 ) 1 (1 ) 1 (1 )
h h hγ γ γ

γ γ γ
∈ ∈ ∈

  = − − − − − − − − 
  

   

         
{0.1820,0.2165,0.2238,0.2403,0.2678,0.2882,0.2972,0.3601,=  

         
0.3740,0.4057,0.4610,0.5047}  

         
It is noted that the HFWA, HFWG, GHFWA and GHFWG operators only 

weight the hesitant fuzzy argument itself, but ignores the importance of the 
ordered position of the argument, while the HFOWA, HFOWG, GHFOWA and 
GHFOWG operators only weight the ordered position of each given argument, but 
ignore the importance of the argument. To avoid this drawback, it is necessary to 
introduce some hybrid aggregation operators for hesitant fuzzy arguments, which 
weight all the given arguments and their ordered positions.  

         

Definition 1.21 (Xia and Xu 2011a). For a collection of HFEs ih ( 1, 2, ,i n=  ), 

1 2( , , , )nw w w w Τ=   is their weight vector with [0,1]iw ∈ , 1, 2, ,i n=  , 

and 
1

1
n

i
i

w
=

= , n  is the balancing coefficient which plays a role of balance, then 

we define the following aggregation operators, which are all based on the mapping 
nΘ → Θ  with an aggregation-associated vector 1 2( , , , )nω ω ω ω Τ=   such 

that [0,1]iω ∈  and 
1

1
n

i
i

ω
=

= : 

          
(1) The hesitant fuzzy hybrid averaging (HFHA) operator: 

          

HFHA 1 2 ( )
1

( , , , )
n

n i i
i

h h h hσω
=

= ⊕   
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( )
(1) (1) ( 2) ( 2 ) ( ) ( )

( )
, , , 1

1 1
i

n n

n

i
h h h iσ σ σ σ σ σ

ω
σ

γ γ γ
γ

∈ ∈ ∈ =

 = − − 
 

∏    
                 (1.48)    

          

where ( )ihσ
  is the i th largest of k kh nw h= ( 1, 2, ,k n=  ).  

          
(2) The hesitant fuzzy hybrid geometric (HFHG) operator: 

          

HFHG 1 2( , , , )nh h h =
(1) (1) ( 2) ( 2 ) ( ) ( )

( ) ( )
1 , , , 1

i i

n n

nn

i i
i h h h i

h
σ σ σ σ σ σ

ω ω
σ σ

γ γ γ
γ

= ∈ ∈ ∈ =

 ⊗ =  
 
∏    

    

(1.49)    
          

where ( )ihσ
  is the i th largest of knw

k kh h= ( 1, 2, ,k n=  ). 

          
(3) The generalized hesitant fuzzy hybrid averaging (HFHA) operator: 

          

GHFHA 1 2( , , , )nh h h =
1

( )
1

n

i i
i

h
λλ

σω
=

 ⊕ 
 

  

( )
(1) (1) ( 2) ( 2 ) ( ) ( )

1

( )
, , , 1

1 1
i

n n

n

i
h h h iσ σ σ σ σ σ

λωλ
σ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − −  
   

∏    
        (1.50)      

          

where 0λ > , ( )jhσ
  is the j th largest of k kh nw h= ( 1, 2, ,k n=  ). 

          
(4) The generalized hesitant fuzzy hybrid geometric (GHFHG) operator: 

          

GHFHG ( )1 2 ( )
1

1
( , , , )

i
n

n i
i

h h h h
ω

σλ
λ =

 = ⊕ 
 

  

          

( )( )
(1) (1) ( 2) ( 2 ) ( ) ( )

1

( )
, , , 1

1 1 1 1
i

n n

n

i
h h h iσ σ σ σ σ σ

ω λλ
σ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − − − −  
   

∏    
   (1.51)         

          

where 0λ > , ( )ihσ
  is the i th largest of knw

k kh h= ( 1, 2, ,k n=  ). 
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Especially, if 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , then the HFHA operator reduces to the 

HFOWA operator, the HFHG operator reduces to the HFOWG operator, the 
GHFHA operator reduces to the GHFOWA operator, and the GHFHG operator 
becomes the GHFOWG operator; If 1λ = , then the GHFHA operator reduces to 
the HFHA operator, and the GHFHG operator becomes the HFHG operator. 

          
Example 1.8 (Xia and Xu 2011a).  Let 1 {0.2,0.4,0.5}h = , 2 {0.2,0.6}h =  and 

3 {0.1,0.3,0.4}h =  be three HFEs, whose weight vector is (0.15,0.3,0.55)w Τ= , 

and the aggregation-associated vector is (0.3,0.4,0.3)ω Τ= , then we can obtain 

          

{ }3 0.15 3 0.15 3 0.15
1 1 (1 0.2) ,1 (1 0.4) ,1 (1 0.5) {0.0955,0.2054,0.2680}h × × ×= − − − − − − =  

          

{ }3 0.3 3 0.3
2 1 (1 0.2) ,1 (1 0.6) {0.1819,0.5616}h × ×= − − − − =  

          

{ }3 0.55 3 0.55 3 0.55
3 1 (1 0.1) ,1 (1 0.3) ,1 (1 0.4) {0.1596,0.4448,0.5695}h × × ×= − − − − − − =  

          
and 

1( ) 0.1896s h = , 2( ) 0.3718s h = , 3( ) 0.3913s h =  

Since  

3 2 1( ) ( ) ( )s h s h s h> >    

then 
          

(1) 3 {0.1596,0.4448,0.5695}h hσ = =  , (2) 2 {0.1819,0.5616}h hσ = =   

          

(3) 1 {0.0955,0.2054,0.2680}h hσ = =   

          
Thus, we have 

          

GHFHA1 1 2 3( , , )h h h = HFHA
3

1 2 3 ( )
1

( , , ) i i
i

h h h hσω
=

= ⊕   

          

{ }
1 1 2 2 3 3

0.3 0.4 0.3
3 2 1

, ,
1 (1 ) (1 ) (1 )

h h hγ γ γ
γ γ γ

∈ ∈ ∈
= − − − −
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{0.1501,0.1825,0.2023,0.2494,0.2781,0.2956,0.3046,0.3311,0.3378,=  

          
0.3474,0.3630,0.3785,0.4152,0.4375,0.4512,0.4582,0.4788,0.4915} 

          

GHFHA3

1
3 33

1 2 3 ( )
1

( , , ) i i
i

h h h hσω
=

 = ⊕ 
 

  

          

( ) ( ) ( )( )
1 1 2 2 3 3

1
0.3 0.4 0.3 33 3 3

3 2 1
, ,

1 1 1 1
h h hγ γ γ

γ γ γ
∈ ∈ ∈

  = − − − − 
  

    
    

          
{0.1573,0.1840,0.2112,0.3102,0.3179,0.3279,0.3957,0.4243,0.4283,=  

          
0.4336,0.4649,0.4681,0.4725,0.4003,0.4065,0.5069,0.5095,0.5130} 

          

If we use the GHFHG operator to aggregate the HFEs 1h , 2h  and 3h , then 

          

{ }3 0.15 3 0.15 3 0.15
(1) 1 0.2 ,0.4 ,0.5 {0.4847,0.6621,0.7320}h hσ

× × ×= = =   

          

{ }3 0.3 3 0.3
(2) 2 0.2 ,0.6 {0.2349,0.6314}h hσ

× ×= = =   

          

{ }3 0.55 3 0.55 3 0.55
(3) 3 0.1 ,0.3 ,0.4 {0.0224,0.1372,0.2205}h hσ

× × ×= = =   

          

GHFHG1 1 2 3( , , )h h h = HFHG { }
1 1 2 2 3 3

3
0.3 0.4 0.3

1 2 3 ( ) 1 2 3
1 , ,

( , , ) i
i

i h h h
h h h hω

σ
γ γ γ

γ γ γ
= ∈ ∈ ∈

= ⊕ =
    

   

          
{0.1442,0.1584,0.1632,0.2142,0.2352,0.2424,0.2484,0.2728,0.2811,=  

          
0.2864,0.3145,0.3241,0.3690,0.4051,0.4175,0.4254,0.4671,0.4814}  

          

GHFHG3 ( )3

1 2 3 ( )
1

1
( , , ) 3

3

i

i
i

h h h h
ω

σ=

 = ⊗ 
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( ) ( ) ( )( )
1 1 2 2 3 3

1
0.25 0.4 0.35 32 2 2

1 2 3
, ,

1 1 1 (1 ) 1 (1 ) 1 (1 )
h h hγ γ γ

γ γ γ
∈ ∈ ∈

  = − − − − − − − − 
  

    
    

          
{0.1264,0.1312,0.1322,0.1633,0.1698,0.1710,0.2361,0.2467,0.2487,=  

 
0.2772,0.2905,0.2930,0.3222,0.3390,0.3423,0.3902,0.4138,0.4185}  

          
In some practical problems, for example, the presidential election or the blind 

peer review of thesis, anonymity is required in order to protect the DMs’ privacy 
or avoid influencing each other. In this section, we apply the hesitant fuzzy 
aggregation operators to MADM with anonymity. Suppose that there are n  

alternatives iA ( 1, 2, ,i n=  ) and m  attributes jx ( 1, 2, ,j m=  ) with the 

attribute weight vector 1 2( , , , )mw w w w Τ=   such that [0,1]jw ∈ , 1,2, ,j m=  , 

and 
1

1
m

j
j

w
=

= . If the DMs provide several values for the alternative iA  under 

the attribute jx  with anonymity, then these values can be considered as a HFE 

ijh . In the case where two DMs provide the same value, then the value emerges 

only once in ijh .  

Based on the above analysis, we give the following decision making method 
(Xia and Xu 2011a): 

          

Step 1.  The DMs provide their evaluations about the alternative iA  under the 

attribute jx , denoted by the HFEs ijh ( 1,2, , ; 1,2, , )i n j m= =  . In the 

process of aggregation, we may deal with two kinds of attributes, i.e., (1)  
The benefit type attributes, the bigger the preference values the better; (2) The cost 
type attributes, the smaller the preference values the better. In such cases, we may 
transform the preference values of the cost type attributes into the preference 

values of the benefit type attributes. Then H = ( )ij n mh ×  can be transformed into 

the matrix B =  ( )ij n mb × , where 

                    

{ },

{1 },ij ij

ij j

ij
t b

ij j

for benefit attribute x
b

for cost attribute x

γ
γ∈

= =  −
 ,  

  1, 2,..., ; 1,2,...,i n j m= =          (1.52) 
 

and {1 }
ij ij

c
ij ij

h
h

γ
γ

∈

− =  is the complement of ijh . 
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Step 2.  Utilize one of the developed aggregation operators to obtain the HFEs 

ib ( 1, 2, , )i n=   for the alternatives iA ( 1, 2, , )i n=  , for example,  
          

ib = GHFWA 1 2( , , , )i i imb b bλ =
1

1

m

j ij
j

w b
λλ

=

 ⊕ 
 

                  (1.53) 

              

Step 3.  Compute the scores ( )is b ( 1, 2, , )i n=   of ib ( 1, 2, , )i n=  . 
              

Step 4. Get the priority of the alternatives iA ( 1, 2, ,i n=  ) by ranking 

( )is b ( 1, 2, , )i n=  . 
              

Example 1.9 (Parreiras et al. 2010).  The enterprise’s board of directors, which 
includes five members, is to plan the development of large projects (strategy 
initiatives) for the following five years. Suppose that there are four possible 

projects ( 1, 2,3,4)iA i =  to be evaluated. It is necessary to compare these 

projects to select the most important of them as well as order them from the point 
of view of their importance degrees, taking into account four attributes suggested 
by the Balanced Scorecard methodology (Kaplan and Norton 1996) (it should be 

noted that all of them are of benefit type): (1) 1x : Financial perspective; (2) 2x : 

The customer satisfaction; (3) 3x : Internal business process perspective; (4) 4x : 

Learning and growth perspective. Suppose that the weight vector of the attributes 

is (0.2,0.3,0.15,w =  0.35)Τ . 

In the following, we use the developed method to get the optimal project  
(Xia and Xu 2011a): 

              
Step 1.  In order to avoid influencing each other, the DMs are required to provide 

their preferences in anonymity and the decision matrix 4 4( )ijH h ×=  is presented in 

Table 1.1 (Xia and Xu 2011a), where ijh ( , 1,2,3, 4)i j =  are in the form of HFEs. 

 
Table 1.1. Hesitant fuzzy decision matrix 

 
1x  2x  3x  4x  

1A  (0.2,0.4,0.7) (0.2,0.6,0.8) (0.2,0.3,0.6,0.7,0.9) (0.3,0.4,0.5,0.7,0.8) 

2A  (0.2,0.4,0.7,0.9) (0.1,0.2,0.4,0.5) (0.3,0.4,0.6,0.9) (0.5,0.6,0.8,0.9) 

3A  (0.3,0.5,0.6,0.7) (0.2,0.4,0.5,0.6) (0.3,0.5,0.7,0.8) (0.2,0.5,0.6,0.7) 

4A  (0.3,0.5,0.6) (0.2,0.4) (0.5,0.6,0.7) (0.8,0.9) 
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Step 2.  Considering that all the attributes jx ( 1,2,3, 4)j =  are the benefit type 

attributes, the preference values of the projects ( 1, 2,3,4)iA i =  do not need 

normalization. Thus, we utilize the GHFWA operator to obtain the HFEs 

ih ( 1, 2,3,4)i =  for the projects iA ( 1, 2,3,4)i = . Here we take the project 

4A  for an example, and let 1λ = , then 

              

4h = GHFWA1 41 42 43 44( , , , )h h h h  

              

=HFWA ( ){0.3,0.5,0.6},{0.2,0.4},{0.5,0.6,0.7},{0.8,0.9}  

              

( )
41 41 42 42 43 43 44 44

44

4 4
1 , , , 1

1 1
jw

j j j
j h h h h j

w h
γ γ γ γ

γ
= ∈ ∈ ∈ ∈ =

 
= ⊕ = − − 

 
∏  

              
{0.5532,0.5679,0.5822,0.5861,0.5901,0.5960,0.6005,0.6036,0.6131,=  

              
0.6136,0.6168,0.6203,0.6294,0.6299,0.6335,0.6450,0.6456,0.6494,  

              
0.6605,0.6610,0.6753,0.6722,0.6784,0.6830,0.6865,0.6890,0.6964,  

              
0.6969, 0.6993,0.7021,0.7092,0.7097,0.7125,0.7215,0.7219,0.7337} 

              
As the parameter λ  changes, we can get different results for each alternative. 

Here we will not list them for vast amounts of data. 
              

Step 3.  Compute the scores ( )is h ( 1, 2,3,4)i =  of ih ( 1, 2,3,4)i = . The 

scores for the alternatives iA ( 1, 2,3,4)i =  are shown in Table 1.2.  

              

Step 4. By ranking ( )is h ( 1, 2,3,4)i = , we can get the priorities of the 

alternatives iA ( 1, 2,3,4)i =  as the parameter λ  changes, which are listed in 

Table 1.2 (Xia and Xu 2011a). 
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Table 1.2. Score values obtained by the GHFWA operator and the rankings of alternatives 

 
1A  2A  3A  4A  Rankings 

GHFWA1 0.5634 0.6009 0.5178 0.6524 4A  2A  1A  3A  

GHFWA2 0.5847 0.6278 0.5337 0.6781 4A  2A  1A  3A  

GHFWA5 0.6324 0.6807 0.5723 0.7314 4A  2A  1A  3A  

GHFWA10 0.6730 0.7235 0.6087 0.7745 4A  2A  1A  3A  

GHFWA20 0.7058 0.7576 0.6410 0.8077 4A  2A  1A  3A  

 

 
From Table 1.2, we can find that the scores obtained by the GHFWA operator 

become bigger as the parameter λ  increases for the same aggregation arguments, 

and the DMs can choose the values of λ  according to their preferences. 
In Step 2, if we use the GHFWG operator instead of the GHFWA operator to 

aggregate the values of the alternatives, the scores and the rankings of the 
alternatives are listed in Table 1.3 (Xia and Xu 2011a). 

Table 1.3. Score values obtained by the GHFWG operator and the rankings of alternatives 

 
1A  2A  3A  4A  Rankings 

GHFWG1 0.4783 0.4625 0.4661 0.5130 
4A  1A  3A  2A  

GHFWG2 0.4546 0.4295 0.4526 0.4755 
4A  1A  3A  2A  

GHFWG5 0.4011 0.3706 0. 4170 0.4082 
3A  4A  1A  2A  

GHFWG10 0.3564 0.3264 0.3809 0.3609 
3A  4A  1A  2A  

GHFWG20 0.3221 0.2919 0.3507 0.3266 
3A  4A  1A  2A  

 

 
It is pointed out that the ranking of the alternatives may change when the 

parameter λ  in the GHFWG operator changes. By analyzing Tables 1.2 and 1.3, 
we can find that the scores obtained by the GHFWG operator become smaller as 
the parameter λ  increases for the same aggregation arguments, but the values 
obtained by the GHFWA operator are always greater than the ones obtained by the 
GHFWG operator for the same value of the parameter λ  and the same 
aggregation values. 
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Although the HFHA (HFHG) operator generalizes both the HFWA (HFWG) 
and HFOWA (HFOWG) operators by weighting the given importance degrees and 
the ordered positions of the arguments, there is a flaw that the operator does not 
satisfy the desirable property, i.e., idempotency. An example can be used to 
illustrate this drawback. 

 

Example 1.10 (Liao and Xu 2013c).  Assume that { }1 0.3,0.3,0.3h = , 2h =  

{ }0.3,0.3,0.3  and { }3 0.3,0.3,0.3h =  are three HFEs, whose weight vector is 

(1, 0, 0)w Τ= , and the aggregation-associated vector is also (1,0,0)ω Τ= , 

then  
              

( )3 3 3
1 1 1 1 13 1 3 3 1 (1 0.3) ,1 (1 0.3) ,1 (1 0.3)h h h h h= × × = = = = − − − − − −  

( )0.657,0.657,0.657=  

              

( ) ( )0 0 0
2 2 23 0 0 1 (1 0.3) ,1 (1 0.3) ,1 (1 0.3) 0,0,0h h h= × × = × = − − − − − − =  

              

( ) ( )0 0 0
3 3 33 0 0 1 (1 0.3) ,1 (1 0.3) ,1 (1 0.3) 0,0,0h h h= × × = × = − − − − − − =  

              

Obviously, ( ) ( ) ( )1 2 3s h s h s h> =   . By using Eq.(1.48), we have 

              

HFHA ( ) ( )3

1 2 3 ( )
1

, , j j
j

h h h hσω
=

= ⊕   

              

( ) ( ) ( ){ }
(1) (1) ( 2) (2 ) (3) (3)

1 0 0

(1) (2) (3)
, ,

1 1 1 1
h h hσ σ σ σ σ σ

σ σ σ
γ γ γ

γ γ γ
∈ ∈ ∈

= − − − −
    

    

              

( )0.657,0.657,0.657= { }0.3,0.3,0.3≠  

              
Analogously,  

              

( ) ( )3 1 3 3 3 3
1 1 1 0.3 ,0.3 ,0.3 0.027,0.027,0.027h h h×= = = =  

              

( ) ( )3 0 0 0 0 0
2 2 2 0.3 ,0.3 ,0.3 0,0,0h h h×= = = =  

              

( ) ( )3 0 0 0 0 0
3 3 3 0.3 ,0.3 ,0.3 0,0,0h h h×= = = =  
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HFHG ( )1 2 3, ,h h h = { }
(1) (1) ( 2) (2 ) (3) (3)

3
1 0 0

( ) (1) (2) (3)
1 , ,

j

j
j h h h

h
σ σ σ σ σ σ

ω
σ σ σ σ

γ γ γ
γ γ γ

= ∈ ∈ ∈
⊗ =

    
     

     
( )0,0,0= { }0.3,0.3,0.3≠  

              
Idempotency is one of the most important property for aggregation operators 

(Lin and Jiang 2011), but the HFHA and HFWG operators don’t meet this basic 
property, we may develop some new hybrid aggregation operators which also 
weight the importance of each argument and its ordered position simultaneously. 
Recently, Liao and Xu (2013c) developed some new hybrid operators for HFEs: 

Consider the HFOWA operator given as Eq.(1.45), it is equivalent to the 
following form: 

              

             HFOWA ( )1 2, , , nh h h = ( )( )
1

n

j j
j

hσω
=

⊕                        (1.54) 

              

where jh  is the ( )jσ th largest element of jh ( 1, 2, ,j n=  ). Inspired by this, 

suppose that the weighting vector of the elements is ( )1 2, , , nw w w w
Τ=  , in 

order to weight the element and its position simultaneously, we can use such a 

form as ( )
1

n

j j j
j

w hσω
=

⊕ , which weights both the element and its position. After 

normalization, a hesitant fuzzy hybrid arithmetical averaging operator can be 
generated as follows: 

              
Definition 1.22 (Liao and Xu 2013c).  For a collection of HFEs 

jh ( 1, 2, ,j n=  ), a hesitant fuzzy hybrid arithmetical averaging (HFHAA) 

operator is a mapping HFHAA: nΘ → Θ , defined by an associated weighting 

vector ( )1 2, , , nω ω ω ω Τ=   with [ ]0,1jω ∈  and 
1

1
n

j
j

ω
=

= , such that 

HFHAA ( )
( )

1
1 2

( )
1

, , ,

n

j j j
j

n n

j j
j

w h
h h h

w

σ

σ

ω

ω

=

=

⊕
=


                                (1.55) 

where { } { }: 1, 2, , 1, 2, ,n nσ →   is the permutation such that jh  is the 

( )jσ th largest element of the collection of HFEs jh ( 1, 2, ,j n=  ), and 
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( )1 2, , , nw w w w
Τ=   is the weighting vector of the HFEs jh ( 1, 2, ,j n=  ), 

with [ ]0,1jw ∈ , 1, 2, ,j n=  , and 
1

1
n

j
j

w
=

= . 

              
Theorem 1.25 (Liao and Xu 2013c).  For a collection of HFEs 

jh ( 1, 2, ,j n=  ), the aggregated value by using the HFHAA operator is also a 

HFE, and  
              

HFHAA ( )1 2, , , nh h h =

( )

( )
1

1 1 2 2, , , 1

1 (1 )

j j
n

j j
j

n n

w

wn

j
h h h j

σ

σ

ω

ω

γ γ γ
γ =

∈ ∈ ∈ =

 
  − − 
 
  

∏

       (1.56) 

              
Proof.  From the definition of HFE, it is obvious that the aggregated value by 
using the HFHAA operator is also a HFE. 

By using the operational law (2) given in Definition 1.7, we have 
              

          
( )

( )
1

j j
jn

j j
j

w
h

w

σ

σ

ω

ω
=

=


( )

( )
11 (1 )

j j
n

j j
j

j j

w

w

j
h

σ

σ

ω

ω

γ
γ =

∈

 
  − − 
 
  

 , 1, 2, ,j n=       (1.57) 

              

Summing all these weighted HFEs 
( )

( )
1

j j
jn

j j
j

w
h

w

σ

σ

ω

ω
=


 ( 1, 2, ,j n=  ) by using 

the operational law (3) given in Definition 1.7, we can derive 
              

HFHAA ( )
( )

1
1 2

( )
1

, , ,

n

j j j
j

n n

j j
j

w h
h h h

w

σ

σ

ω

ω

=

=

⊕
=




( )

( )
1

1
1 (1 )

j j
n

j j
j

j j

w

wn

j
j h

σ

σ

ω

ω

γ
γ =

= ∈

  
    = ⊕ − −       

  

( )
' ' '

1 1 2 2, , , 1

1 1
n n

n

j
h h h jζ ζ ζ

ζ
∈ ∈ ∈ =

 
= − − 

 
∏


                (1.58) 

              
where  
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( )'

( )
1

j j
j jn

j j
j

w
h h

w

σ

σ

ω

ω
=

=


, 

( )

( )
11 (1 ) ,

j j
n

j j
j

w

w

j j

σ

σ

ω

ω

ζ γ =


= − −  j jhγ ∈ , 1, 2, ,j n=     (1.59) 

              
Combining Eqs.(1.58) and (1.59) , we obtain 

              

HFHAA ( )1 2, , , nh h h

( )

( )
1

1 1 2 2, , , 1

1 1 1 (1 )

j j
n

j j
j

n n

w

wn

j
h h h j

σ

σ

ω

ω

γ γ γ
γ =

∈ ∈ ∈ =

   
      = − − − −          

∏

  

              

( )

( )
1

1 1 2 2, , , 1

1 (1 )

j j
n

j j
j

n n

w

wn

j
h h h j

σ

σ

ω

ω

γ γ γ
γ =

∈ ∈ ∈ =

 
  = − − 
 
  

∏

          (1.60) 

              
which completes the proof of Theorem 1.25. 

 

Example 1.11 (Liao and Xu 2013c).  Let { }1 0.2,0.4,0.5h = , { }2 0.2,0.6h =  

and { }3 0.1,0.3,0.4h =  be three HFEs, whose weight vector is 

(0.15,0.3,0.55)w Τ= , and the aggregation-associated vector is 

( )0.3,0.4,0.3ω Τ= . 

              

At first, comparing 1h , 2h  and 3h  by using the score formula given as 

Definition 1.2, we have 
              

1

0.2 0.4 0.5
( ) 0.3667

3
s h

+ += = , 2

0.2 0.6
( ) 0.4

2
s h

+= =   

              

3

0.1 0.3 0.4
( ) 0.2667

3
s h

+ += =   
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Since 2 1 3( ) ( ) ( )s h s h s h> > , then we can obtain 2 1 3h h h> > , and hence 

(1) 2,σ = and(2) 1,  (3) 3σ σ= = . Then 

              

1 (1)

3

( )
1

0.15 0.4
0.19

0.15 0.4 0.3 0.3 0.55 0.3
j j

j

w

w

σ

σ

ω

ω
=

×= =
× + × + ×

 

              

2 (2)

3

( )
1

0.286

j j
j

w

w

σ

σ

ω

ω
=

=


, 
3 (3)

3

( )
1

0.524

j j
j

w

w

σ

σ

ω

ω
=

=


 

              
Then, by using Eq.(1.56), we can calculate that 

              

HFHAA ( ) ( )
( )

3
( )

1

1 1 2 2 3 3

3

3( )
1

1 2 3
, , 1

( )
1

, , 1 1

w j j

wj j
jj j j

j
jn

h h h j
j j

j

w h
h h h

w

ωσ

ωσ
σ

γ γ γ
σ

ω
γ

ω


=

=

∈ ∈ ∈ =

=

 
⊕   = = − − 

 
  

∏


  

              

{ }
1 1 2 2 3 3

0.19 0.286 0.524
1 2 3

, ,
1 (1 ) (1 ) (1 )

h h hγ γ γ
γ γ γ

∈ ∈ ∈
= − − − −  

              
{0.1490,0.1943,0.2217,0.2541,0.2938,0.3020,0.3119,0.3178,=  

0.3392,0.3485,0.3617,0.3707,0.3882,0.4207,0.4356,0.4405,  

0.4656,0.4838}  

              

Theorem 1.26 (Liao and Xu 2013c).  (Idempotency)  If jh h= ( 1,2, ,j n=  ), 

then HFHAA ( )1 2, , , nh h h  h= . 
              

Proof.  According to Eq.(1.55), we have 
              

HFHAA ( )
( )

( ) ( )
1 1 1

1 2

( ) ( ) ( )
1 1 1

, , ,

n
n n

j j
j j j j j

j j j
n n n n

j j j j j j
j j j

h h
h h h h h

σσ σ

σ σ σ

λ ωλ ω λ ω

λ ω λ ω λ ω

= = =

= = =

⊕ ⊕
= = = =



  
  

                                                                (1.61)  
 

Thus, HFHAA ( )1 2, , , nh h h h= , which completes the proof of the theorem. 
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Example 1.12 (Liao and Xu 2013c).  Let’s use the HFHAA operator to calculate 
Example 1.10. We have 

              

HFHAA ( ) { }
1 1 2 2 3 3

3

( )
1 1 0 0

1 2 3 1 2 3
, ,

( )
1

, , 1 (1 ) (1 ) (1 )
j j j

j

n
h h h

j j
j

w h
h h h

w

σ

γ γ γ
σ

ω
γ γ γ

ω

=

∈ ∈ ∈

=

⊕
= = − − − −


  

1 2 3{0.3, 0.3, 0.3} h h h= = = =  

              
which satisfies the property of idempotency. This is also consistent with our 
intuition. From this example, we can see that the HFHAA operator is more 
reasonable than the HFHA operator developed by Xia and Xu (2011a). 

By using the different manifestation of weighting vector, the HFHAA operator 
can reduce to some special cases. For example, if the associated weighting vector 

1 1 1
, , ,

n n n
ω

Τ
 =  
 

 , then the HFHAA operator reduces to the HFWA operator; 

If 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , then the HFHAA operator reduces to the HFOWA 

operator. It must be pointed out that the weighting operation of the ordered 
position can be synchronized with the weighting operation of the given 
importance by the HFHAA operator. This characteristic is different from the 
HFHA operator. 

Analogously, we also can develop the HFHAG operator for HFEs: 
              

Definition 1.23 (Liao and Xu 2013c).  For a collection of HFEs 

jh ( 1, 2, ,j n=  ), a hesitant fuzzy hybrid arithmetical geometric (HFHAG) 

operator is a mapping HFHAG: nΘ → Θ , defined by an associated weighting 

vector ( )1 2, , , nω ω ω ω Τ=   with [ ]0,1jω ∈ , 1, 2, ,j n=  , and 
1

1
n

j
j

ω
=

= , 

such that 

HFHAG ( ) ( )
( )

( )
1

1 2
1

, , ,

j j
n

j j
jn

n j
j

h h h h

λ ωσ

λ ωσ
=

=
= ⊗                          (1.62) 

              

where { } { }: 1, 2, , 1, 2, ,n nσ →   is the permutation such that jh  is the 

( )jσ th largest element of the collection of HFEs jh ( 1, 2, ,j n=  ), and 
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( )1 2, , , nw w w w
Τ=   is the weighting vector of the HFEs jh ( 1, 2, ,j n=  ), 

with [ ]0,1jw ∈ , 1, 2, ,j n=  , and 
1

1
n

j
j

w
=

= . 

              
Theorem 1.27 (Liao and Xu 2013c).  For a collection of HFEs 

jh ( 1, 2, ,j n=  ), the aggregated value by using the HFHAG operator is also a 

HFE, and  
              

HFHAG ( )1 2, , , nh h h =

( )

( )
1

1 1 2 2, , , 1

j j
n

j j
j

n n

w

wn

j
h h h j

σ

σ

ω

ω

γ γ γ
γ =

∈ ∈ ∈ =

 
  
 
 
  

∏

          (1.63) 

              
Proof.  Similar to Theorem 1.25, the aggregated value by using the HFHAG 

operator is also a HFE. 
              
By using the operational law (1) given in Definition 1.7, we have 
              

           ( )
( ) ( )

( )
1 ( )

1

wj j j j
n n

wj j
j j j

j

j

w

w

j
h

h

ωσ σ

ωσ
σ

ω

ω

γ
γ


=

=

∈


=  , 1, 2, ,j n=         (1.64) 

              
According to the operational law (4) given in Definition 1.7, we can derive 
              

HFHAG ( ) ( )
( )

( )
1

1 2
1

, , ,

wj j
n

wj j
jn

n j
j

h h h h

ωσ

ωσ
=

=
= ⊗

" " "
1 1 2 2, , , 1n n

n

j
h h h jξ ξ ξ

ξ
∈ ∈ ∈ =

 
=  

 
∏


      (1.65) 

              
where  

              

( )
( )

( )
1

''

w j j
n

w j j
j

j jh h

ωσ

ωσ
=

=  and 

( )

( )
1 ,

j j
n

j j
j

w

w

j j

σ

σ

ω

ω

ξ γ =


= j jhγ ∈ , 1, 2, ,j n=          (1.66) 
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Combining Eqs.(1.65) and (1.66) , we can obtain 
              

         HFHAG ( )1 2, , , nh h h
( )

( )
1

1 1 2 2, , ,

1

j j
n

j j
j

n n

w

wn

h h h j
j

σ

σ

ω

ω

γ γ γ γ =
∈ ∈ ∈

=

 
 =  
 
 
∏

        (1.67) 

              
which completes the proof of Theorem 1.27. 

              
Example 1.13 (Liao and Xu 2013c).  Let’s use the HFHAG operator to fuse the 

HFEs 1h , 2h  and 3h  in Example 1.11. According to Theorem 1.27, we have 

              

HFHAG ( )1 2 3, ,h h h

( )
3

( )
1

1 1 2 2 3 3

3

, ,

1

j j

j j
j

w

w

h h h j
j

σ

σ

ω

ω

γ γ γ γ =
∈ ∈ ∈

=

 
 =  
 
 
∏  

              

{ }
1 1 2 2 3 3

0.19 0.286 0.524
1 2 3

, ,h h hγ γ γ
γ γ γ

∈ ∈ ∈
=   

              
{0.1391,0.1587,0.1655,0.1904,0.2172,0.2266,0.2473,0.2822,0.2876,0.2944,=    

0.3281,0.3387,0.3423,0.3863,0.3938,0.4031,0.4492,0.4686} 

              

Theorem 1.28 (Idempotency) (Liao and Xu 2013c).  If jh h=  ( 1, 2, ,j n=  ), 

then HFHAG ( )1 2, , , nh h h h= . 

              

Proof.  Since jh h= , then jγ γ= . Hence, according to Eq.(1.63), we have 

              

HFHAG ( )1 2, , , nh h h =
( )

( )
1

1 1 2 2, , ,

1

j j
n

j j
j

n n

w

wn

h h h j
j

σ

σ

ω

ω

γ γ γ γ =
∈ ∈ ∈

=

 
  
 
 
∏

  

( )
1

( )1 1 2 2
1

, , ,

n

j j
j
n

j jn n
j

w

wh h h

σ

σ

ω

ωγ γ γ
γ

=

=
∈ ∈ ∈

  =   
 


 { }

h
h

γ
γ

∈
= =           (1.68) 

              
Thus, HFHAG ( )1 2, , , nh h h h= , which completes the proof of Theorem 1.28. 
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Example 1.14 (Liao and Xu 2013c).  Let’s use the HFHAG operator to calculate 
Example 1.10, then we have 

              

HFHAG ( ) ( )
( )

( )
1

1 2 3
1

, ,

w j j
n

w j j
jn

j
j

h h h h

ωσ

ωσ
=

=
= ⊗  

{ }
1 1 2 2 3 3

1 0 0
1 2 3 1 2 3

, ,
{0.3,0.3,0.3}

h h h
h h h

γ γ γ
γ γ γ

∈ ∈ ∈
= = = = =  

 
which means the HFHAG operator satisfies idempotency, and thus is more 
reasonable than Xia and Xu (2011a)’s HFHG operator. 

Especially, if the associated weighting vector 
1 1 1

, ,...,
n n n

ω
Τ

 =  
 

, then the 

HFHAG operator reduces to the HFWG operator; If 
1 1 1

, ,...,w
n n n

Τ
 =  
 

, then 

the HFHAG operator reduces to the HFOWG operator. With the HFHAG 
operator, the weighting operation of the ordered position also can be synchronized 
with the weighting operation of the given importance, while the HFHG operator 
does not have this characteristic. 

Based on the HFHAA (HFHAG) operator, we can propose a procedure for the 
DM to select the best choice with hesitant fuzzy information, which involves the 
following steps (Liao and Xu 2013c): 

              
Step 1.  Construct the hesitant fuzzy decision matrix. The DM determines the 
relevant attributes of the potential alternatives and gives the evaluation 
information in the form of HFEs of the alternatives with respect to the attributes. 
When the DM is asked to compare the alternatives over attributes, he/she may 
have several possible values according to the sub-attributes. Thus, in this situation, 
it is natural to set out all the possible evaluations for an alternative under certain 
attributes given by the DM, which is represented as HFE. He/She also determines 
the importance degrees ( 1, 2, ..., )jw j m=  for the relevant attributes according 

to his/her preferences. Meanwhile, since different alternatives may have different 
focuses and advantages, to reflect this issue, the DM also gives the ordering 
weights ( 1, 2, ..., )j j mω =  for different attributes.  

              
Step 2.  Utilize the HFHAA operator (1.56) or the HFHAG operator (1.63) to 

obtain the HFEs ih ( 1, 2, , )i n=   for the alternatives iA ( 1, 2, , )i n=  .  
              

Step 3.  Compute the scores ( )is h ( 1, 2, , )i n=   of ih ( 1, 2, , )i n=   by 

Definition 1.2 and the deviation degrees ( )ihs¢ ( 1, 2, , )i n=   of 

ih ( 1,2, , )i n=   by Definition 1.5. 
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Step 4. Get the priority of the alternatives iA ( 1, 2, , )i n=   by ranking ( )is h  

and ( )hs¢ ( 1, 2,i = , )n . 

We now use a decision making problem to illustrate the procedure above: 
              

Example 1.15 (Liao and Xu 2013c).  Let’s consider a customer who intends to 

buy a car. There are four alternatives ( 1, 2,3,4)iA i =  under consideration and 

the customer takes three attributes into account to determine which car to buy: 

(1) 1x : Quality of the car, which consists of three sub-attributes: 11x : Safety, 12x : 

Aerod. degree, and 13x : Remedy for quality problems. 

(2) 2x : Overall cost of the product, which consists of four sub-attributes: 21x : 

Product price, 22x : Fuel economy, 23x : Tax, and 24x : Maintenance costs. 

(3) 3x : Appearance of the car, which consists of three sub-attributes: 31x : 

Design; 32x : Color, and 33x : Comfort. 

              
As mentioned above, it is appropriate for the customer to represent his/her 
preference assessments in HFEs to maintain the original evaluation information 

adequately, which are shown in the hesitant fuzzy decision matrix ( )
4 3ijH h
×

=  

(see Table 1.4 (Liao and Xu 2013c)). Note that the attributes have two different 
types such as benefit type and cost type. The customer should take this into 
account in the process of determining the preference values. 

              

Table 1.4. Hesitant fuzzy decision matrix ( )
4 3ijH h
×

=  

 1x  2x  3x  

1A  { }0.6,0.7,0.9 { }0.6,0.8  { }0.3,0.6,0.9  

2A  { }0.7,0.9  { }0.4,0.5,0.8,0.9 { }0.4,0.8  

3A  { }0.6,0.8  { }0.6,0.7,0.9  { }0.3,0.5,0.7  

4A  { }0.6,0.8,0.9 { }0.7,0.9  { }0.2,0.4,0.7  
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The weight information of these three attributes is also determined by the 

customer as T(0.5,0.3,0.2)w = . In addition, consider the fact that different cars 

may focus on different properties, for example, some cars are prominent in 
security with high price, while some cars are cheap but with low appearance. To 
reflect this concern, the customer gives another weight vector 

T(0.6,0.2,0.2)ω =  for each attribute, which denotes that the most  

prominent feature of the car assigns more weight while the remainders assign less 
weight.  

To select the most desirable car, here we utilize the HFHAA operator to obtain 

the HFEs ih  for the cars ( 1, 2,3,4)iA i = . Now we take 2A  as an example, then  

              

2h = HFHAA ( )21 22 23, ,h h h = HFHAA { } { } { }( )0.7,0.9 , 0.4,0.5,0.8,0.9 , 0.4,0.8  

              
Since  

              

( )21

0.7 0.9
0.8

2
s h

+= = , ( )22

0.4 0.5 0.8 0.9
0.65

4
s h

+ + += =  

              

( )23

0.4 0.8
0.6

2
s h

+= =  

              

then 21 22 23h h h> > . Thus, (21) 1, (22) 2,σ σ= =  (23) 3σ = . Then, 

              

1 (21)

3

(2 )
1

0.5 0.6
0.75

0.5 0.6 0.3 0.2 0.2 0.2
j j

j

w

w

σ

σ

ω

ω
=

×= =
× + × + ×

 

2 (22)

3

(2 )
1

0.15

j j
j

w

w

σ

σ

ω

ω
=

=


, 
3 (23)

3

(2 )
1

0.1

j j
j

w

w

σ

σ

ω

ω
=

=


 

              
Thus, by using Eq.(1.56), we can calculate that 

              

2h = HFHAA ( )21 22 23, ,h h h = HFHAA { } { } { }( )0.7,0.9 , 0.4,0.5,0.8,0.9 , 0.4,0.8  
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{ }
21 21 22 22 23 23

0.75 0.15 0.1
21 22 23

, ,
1 (1 ) (1 ) (1 )

h h hγ γ γ
γ γ γ

∈ ∈ ∈
= − − − −   

              
{0.6423,0.6529,0.6848,0.6890,0.6974,0.7273,0.7289,0.7557,0.8435,=  

0.8477,0.8598,0.8636, 0.8673,0.8804,0.8811,0.8928} 

              
Similarly, we can calculate different results by using the HFHAA operator for 

other alternatives, 1 3, ,A A  and 4A . Here we will not list them for vast amounts of 

data. 

Finally, we can compute the scores ( )is h ( 1, 2,3,4)i =  and the deviation 

degrees ( )ihs¢ ( 1, 2,3, 4)i =  of ih ( 1,2,3,4)i = . By ranking ( )is h ( 1, 2,3, 4)i = , 

we can get the priorities of the alternatives iA ( 1, 2,3,4)i = . Since 

1( ) 0.7329s h = , 2( ) 0.6953s h = , 3( ) 0.716s h = , and 4( ) 0.7782s h = , we 

get 4 1( ) ( )s h s h> >  3 2( ) ( )s h s h> , then 4 1 3 2h h h h   , i.e., the car 4A  is 

the most desirable choice for the customer. 
If we use Xia and Xu (2011a)’s HFHA operator to solve this problem, then we 

have 
              

1h =  HFHA ( )11 12 13, ,h h h = HFHA { } { } { }( )0.6,0.7,0.9 , 0.6,0.8 , 0.3,0.6,0.9  

{0.6438,0.6670,0.7180,0.6856,0.7060,0.7511,0.7251,0.7429,0.7823,=  

0.7573,0.7731,0.8079, 0.8977,0.9044,0.9190,0.9097,0.9156,0.9285}  
 

2h =  HFHA ( )21 22 23, ,h h h = HFHA { } { } { }( )0.7,0.9 , 0.4,0.5,0.8,0.9 , 0.4,0.8  

{0.7097,0.7456,0.7191,0.7538,0.7618,0.7912,0.7897,0.8157,0.8920,  =
        0.9053,0.8955,0.9084, 0.9114,0.9223,0.9218,0.9314} 

              

3h =  HFHA ( )31 32 33, ,h h h = HFHA { } { } { }( )0.6,0.8 , 0.6,0.7,0.9 , 0.3,0.5,0.7  

{0.6438,0.6579,0.6783,0.6618,0.6752,0.6945,0.7225,0.7335,0.7493,=   

0.8091,0.8167,0.8276,0.8188,0.8259,0.8363,0.8513,0.8572,0.8657}
              

4h =  HFHA ( )41 42 43, ,h h h = HFHA { } { } { }( )0.6,0.8,0.9 , 0.7,0.9 , 0.2,0.4,0.7  

={0.6564,0.6680,0.6945,0.7180,0.7276,0.7493,0.8158,0.8221,0.8363,  

0.8489,0.8540,0.8657,0.9013,0.9047,0.9123,0.9190,0.9218,0.9280}  
              

Since 1( ) 0.7908s h = , 2( ) 0.8359s h = , 3( ) 0.7625s h = , and 4( ) 0.8191s h = , 

we get 2 4( ) ( )s h s h> 1 3( ) ( )s h s h> > , then 2 4 1 3h h h h> > > . With Xia and 
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Xu (2011a)’s HFHA operator, the car 2A  turns out to be the most desirable  

choice for the customer, and all the other cars are in the same rank. Meanwhile, 
when using Xia and Xu (2011a)’s HFHA operator, we first need to calculate 

k kh nw h=  and compare them, and then calculate ( )j jhσω  , after which, we shall 

compute the aggregation values with ( )( )
1

n

j j
j

hσω
=

⊕  . Since the computation with 

HFEs is very complex, the results derived via Xia and Xu (2011a)’s HFHA 
operator is hard to be obtained. As for the HFHAA operator, the weighting 
operation of the ordered position is synchronized with the weighting operation of 

the given importance, which is in the mathematical form as ( )j jw σω . Since both 

jw  and ( )jσω  are crisp numbers, we only need to calculate 
( )

1

( )
1

n

j j j
j

n

j j
j

w h

w

σ

σ

ω

ω

=

=

⊕


, 

which makes the HFHAA operator easier to calculate than Xia and Xu (2011a)’s 
HFHA operator. 

1.3   Hesitant Fuzzy Bonferroni Means 

Bonferroni firstly introduced the BM (Bonferroni 1950), which can provide for the 
aggregation lying between the max and min operators and the logical “or” and 
“and” operators. Since the BM can capture the expressed interrelationship of the 
individual arguments, it has been receiving much attention from researchers over 
the last decades. Yager (2009) gave an interpretation of this operator and 
suggested some generalizations which replace the simple average by other mean 
type operators. Beliakov et al. (2010) gave a systematic investigation of a family 
of composed aggregation functions which also generalize the BM. To overcome 
the limitation that the BM can only take the forms of crisp numbers rather than 
any other types of arguments, Xu and Yager (2011) investigated the BM under 
intuitionistic fuzzy environment, Xia et al. (2013b) proposed the generalized 
intuitionistic fuzzy BMs and the geometric BMs.  

              
Definition 1.24 (Bonferroni 1950).  Let , 0p q ≥ , and ia ( 1, 2, , )i n=   be a 

collection of nonnegative numbers, if  
              

            ( ),
1 2, , ,p q

nB a a a =

1

, 1

1

( 1)

p q
n

p q
i j

i j
i j

a a
n n

+

=
≠

 
 
 − 
 

                   (1.69) 

              

then ,p qB  is called a Bonferroni mean (BM). 
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Apparently, the BM has the following properties: 
              

(1) ( ), 0,0, ,0p qB  = 0. 

              

(2) ( ), , , ,p qB a a a = a, if ia a= , for all i . 

              

(3) ( ) ( ), ,
1 2 1 2, , , , , ,p q p q

n nB a a a B d d d≥  , i.e., ,p qB  is monotonic, if 

i ia d≥ , for all i . 

              

(4) ( ),
1 2min{ } , , , max{ }p q

i n ia B a a a a≤ ≤ . 

              
Zhu et al. (2013a) combined the BM with the hesitant fuzzy information 

represented by HFEs and developed the hesitant fuzzy Bonferroni mean (HFBM):  
              

Definition 1.25 (Zhu et al. 2013a).  Let ih ( 1, 2, , )i n=   be a collection of 

HFEs. For any 0p,q > , if  
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,
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p q
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p q p q
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i j
i j

HFB h h h h h
n n

+

=
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  = ⊕ ⊗

  −   


         

(1.70) 

              

then we call ,p qHFB  a hesitant fuzzy Bonferroni mean (HFBM).  
We can further get the following theorem: 

              

Theorem 1.29 (Zhu et al. 2013a).  Let 0p,q > , and ih ( 1, 2, , )i n=   be a 

collection of HFEs, then the aggregated value by using the HFBM is a HFE, and 
              

( )
, ,

1

1
, ( 1)

1 2 ,
, , 1

( , , , ) 1 1
i j i j

p q
n

p q n n
n i j

i j i j
i j

HFB h h h
γ σ

γ
+

−

∈ ≠ =
≠

 
    = − −       

∏ 

     

(1.71) 

              

where ,
p q

i j i jh hσ = ⊗  reflects the interrelationship between ih  and jh , ,i j =  

1, 2, , ,n i j ≠ . 
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Proof.  Since  
              

{ }
, ,

, ,
,

{ }
i j i j i i j j

p q p q
i j i j i j i j

h h
h h

γ σ γ γ
σ γ γ γ

∈ ∈ ∈
= ⊗ = =                  (1.72) 

              
which is also a HFE, and 

1

,
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( , ,..., )
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(1.73) 

              
we have 
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then 
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1
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p qp q nn
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i j i j i ji j
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n n γ σ
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where { },
,i i j j

p q p q
i j i j i j

h h
h h

γ γ
σ γ γ

∈ ∈
= ⊗ =  , which completes the proof. 

Below we further discuss some desirable properties of the HFBM, i.e., the 
monotonicity, the commutativity and the boundedness (Zhu et al. 2013a): 

 

(1) (Monotonicity).  Let { }
1 2
, , ,

n
h h hα α α  and { }

1 2
, , ,

n
h h hβ β β  be two 

collections of HFEs, if for any 
i i

hα αγ ∈  and 
i i

hβ βγ ∈ , we have 
i iα βγ γ≤   for 

all i , and ,
p q

i j i jh hσ = ⊗ { }
, ,

,
,

{ }
i j i j i i j j

p q
i j i j

h hγ σ γ γ
γ γ γ

∈ ∈ ∈
= = , then       

              

1 2

, ( , ,..., )
n

p qHFB h h hα α α ≤
1 2

, ( , ,..., )
n

p qHFB h h hβ β β                   
(1.76)

           
 

              
Proof. Since 

i iα βγ γ≤ , for any 
i i

hα αγ ∈ , 
i i

hβ βγ ∈ , i j≠ , then 

i jα αγ γ ≤
i jβ βγ γ   and for any 

, ,i j i jα αγ σ∈ , 
, ,i j i jβ βγ σ∈ , i j≠ , we have 

, ,i j i j i j i j

p q p q
α α α β β βγ γ γ γ γ γ= ≤ = . Thus, 
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we have 
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p qHFB h h hβ β β=                                                                 (1.78) 

              
which completes the proof. 

              

(2) (Commutativity). Let ih ( 1, 2, , )i n=    be a collection of HFEs, and 

1 2( , ,..., )nh h h    any permutation of 1 2( , , ..., )nh h h , then 
              

1

,
1 2 ,
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where ,
p q

i j i jh hσ = ⊗  and ,
p q

i j i jh hσ = ⊗
    ( , 1,2, , , )i j n i j= ≠ .  

              
(3) (Boundedness).  Let ih ( 1, 2, , )i n=   be a collection of HFEs, ih+ =  

max{ }
ii

i
hγ

γ
∈
 , ih− = min{ }

ii

i
hγ

γ
∈
 , i ihγ + +∈ , i ihγ − −∈ , and  

              

{ }
, ,

, ,
,

{ }
i j i j i i j j

p q p q
i j i j i j i j

h h
h h

γ σ γ γ
σ γ γ γ

∈ ∈ ∈
= ⊗ = =                   (1.80) 

              
then 

ih− ≤ ,
1 2( , ,..., )p q

nHFB h h h ≤ ih+
                             (1.81) 

              
Proof.  Since iγ − ≤ iγ ≤ iγ + , for all i , then  

              

( ) p q

iγ
+− ≤ p q

i jγ γ ≤ ( ) p q

iγ
++

                                    
(1.82)

            
 

              

( )
1

( 1)

,
, 1

1

n n
n

i j
i j
i j

γ
−

=
≠

 
 −  
 
∏ ≥ ( )( )

1

( 1)

, 1

1

n n
n p q

i
i j
i j

γ
−

++

=
≠

 
 −  
 
∏              

(1.83) 

              

               ( )
1

( 1)

,
, 1

1

n n
n

i j
i j
i j

γ
−

=
≠

 
 −  
 
∏ ≤ ( )( )

1

( 1)

, 1

1

n n
n p q

i
i j
i j

γ
−

+−

=
≠

 
 −  
 
∏

              
(1.84) 

              
and thus  
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we have 
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which completes the proof.

 

The advantage of the HFBM is that it can capture the interrelationship between 
HFEs, which can be characterized by a function denoted by 

              

( ) ( ), , , ( , 1,2, , , )p q p q
i j i j j i i j j ih h h h i j n i jτ σ σ= ⊕ = ⊗ ⊕ ⊗ = <   (1.89) 

              

where ,
p q

i j i jh hσ = ⊗  and ,
p q

j i j ih hσ = ⊗ . Apparently, ,i jτ  represents the 

interrelationship between the HFEs ih  and jh , and ,i jτ  is also a HFE. We 

consider ,i jτ  as a “bonding satisfaction” factor used as a calculation unit in the 

HFBM, and Zhu et al. (2013a) called it a hesitant Bonferroni element (HBE).  
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On the basis of the HBE, we have 
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and can further develop the following theorem: 

              

Theorem 1.30 (Zhu et al. 2013a).  Let 0p,q > , and ih ( 1, 2, , )i n=   be a 

collection of HFEs, and , ( , 1, 2, , , )i j i j n i jτ = <  the HBE, then 
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where ( ) ( ), ( , 1,2, , , )p q p q
i j i j j ih h h h i j n i jτ = ⊗ ⊕ ⊗ = < . 

Moreover, if we exchange the parameters p  and q , we can get a new property 

called “idempotent commutativity”, which is stated as follows: 
              

(4) (Idempotent Commutativity).  Since 
              

( ) ( ) ( ) ( ), ( , 1,2, , , )p q p q q p q p
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                                                                 (1.92) 

then by exchanging the parameters p  and q , we have  
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where ( ) ( ), ( , 1,2, , , )p q q p
i j i j j ih h h h i j n i jτ = ⊗ ⊕ ⊗ = < . 
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Now, we give an example to illustrate our results: 

Example 1.16 (Zhu et al. 2013a).  Assume that we have three HFEs, 1 {0.1}h = , 

2 {0.2,0.4}h =  and 3 {0.3}h = . Then based on the operations of HFEs, we 

have  
              

1 2h h⊗ {0.02,0.04}= , 2 1h h⊗ {0.02,0.04}= , 1 3h h⊗ {0.03}=  

              

3 1h h⊗ {0.03}= , 2 3h h⊗ {0.06,0.12}= , 3 2h h⊗ {0.06,0.12}=  

              
and obtain  

              

{1,1
1 2 3( , , ) 0.1919,0.2003,0.2176,0.2250,0.2084,0.2321,HFB h h h =  

}0.2403,0.2470,0.2534  

              

{2,2
1 2 3( , , ) 0.2011, 0.2069, 0.2423, 0.2457, 0.2124,0.2490,HFB h h h =  

}0.2692, 0.2718, 0.2742  

              

{1,6
1 2 3( , , ) 0.2360, 0.2712, 0.2523, 0.2792, 0.2361, 0.2713,HFB h h h =  

}0.3045, 0.3086, 0.3153, 0.3187  

              

{6,1
1 2 3( , , ) 0.2360, 0.2712, 0.2523, 0.2792, 0.2361, 0.2713,HFB h h h =  

}0.3045, 0.3086, 0.3153, 0.3187  

              
1,0

1 2 3( , , ) {0.2042,0.2414, 0.2770}HFB h h h =  
              

0,1
1 2 3( , , ) {0.2042,0.2414, 0.2770}HFB h h h =  

              
Then we get 

              

( )1,1
1 2 3( , , ) 0.2242s HFB h h h = , ( )1,6

1 2 3( , , ) 0.2857s HFB h h h =  

( )1,0
1 2 3( , , ) 0.2401s HFB h h h = , ( )2,2

1 2 3( , , ) 0.2425s HFB h h h =  

( )1,6
1 2 3( , , ) 0.2857s HFB h h h = , ( )0,1

1 2 3( , , ) 0.2401s HFB h h h =  

              
When the values of the parameters p  and q  change, more details can be 

found in Figs. 1.1-1.4 (Zhu et al. 2013a).  
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Fig. 1.1. Scores of the HFBM ( , [1,10])p q p= ∈  

 
 

 

Fig. 1.2. Scores of the HFBM ( 5, [1,10])p q q= + ∈  
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Fig. 1.3. Scores of the HFBM ( 5, [1,10])q p p= + ∈  

 

 
 

Fig. 1.4. Scores of the HFBM ( 0, [1,10]; 0, [1,10])q p p q= ∈ = ∈  
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Next, we discuss some special cases by changing the parameters p  and q  as 

follows (Zhu et al. 2013a): 
                  

Case 1.  If q → 0, then we obtain a generalized hesitant fuzzy mean (GHFM): 
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 (1.94) 

                  
Case 2.  If p = 2 and q → 0, then we obtain a hesitant fuzzy square mean 

(HFSM): 
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Case 3.  If p = 1 and q → 0, then we obtain the HFA operator (Xia and Xu 

2011a): 

1,0
1 2( , ), , nHFB h h h =

1

1 n

i
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h
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1

1

1 1
i i
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h iγ

γ
∈ =

 
  − −  
   

∏       (1.96) 

                  
Case 4.  If p = q = 1, then we obtain a hesitant fuzzy interrelated square mean 

(HFISM): 
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where , ( , 1, 2, , , )i j i jh h i j n i jρ = ⊗ = ≠ . 

                  



1.3   Hesitant Fuzzy Bonferroni Means 77 

 

To consider the importance of aggregated arguments, we develop the weighted 
hesitant fuzzy Bonferroni mean (WHFBM) as follows: 

                  

Definition 1.26 (Zhu et al. 2013a).  Let p , q > 0, and ih ( 1,2, , )i n=   be a 

collection of HFEs, 1 2( , , , )nw w w w Τ=   their weight vector, where iw  

indicates the importance degree of ih , satisfying iw [0,1]∈ , 1, 2, ,i n=  , and 

1

1
n

i
i

w
=

= , if  

( ) ( )( )
1

1 2
, 1

1
( , , , )

( 1)

p q
n qp

w n i i j j
i j
i j

WHFB h h h w h w h
n n

+

=
≠

  
  = ⊕ ⊗

  −   
    (1.98) 

                  

then we call ,p q
wHFB  a weighted hesitant fuzzy Bonferroni mean (WHFBM).  

                  

Theorem 1.31 (Zhu et al. 2013a).  Let p , q > 0, and ( 1, 2, , )ih i n=   be a 

collection of HFEs, whose weight vector is ( )T

1 2 , nw w w w= , , , which 

satisfies [0,1], 1,2, ,iw i n∈ =  , and 
1

1
n

i
i

w
=

= , then the aggregated value 

by using the WHFBM is a HFE, and 

( )
, ,

1

1
, ( 1)

1 2 ,
, , 1

( , ,..., ) 1 1
w w
i j i j

p q
n

p q w n n
n i j

i j i j
i j

WHFB h h h
γ σ

γ
+

−

∈ ≠ =
≠

 
    = − −       

∏     (1.99) 

where , ( ) ( )w p q
i j i i j jw h w hσ = ⊗  reflects the interrelationship between ih  and 

jh ( , 1, 2, , ,i j n=  )i j≠ . 

As the typical applications of the aggregation operators, we now develop an 
approach for MADM based on the WHFBM (Zhu et al. 2013a):  

                  

Step 1.  For a MADM problem, let 1 2{ , , , }nA A A A=   be a set of n  

alternatives, 1 2{ , , , }mX x x x=   a set of m  attributes, whose weight vector is 

1 2( , , , )mw w w w Τ=  , satisfying 0jw > , 1, 2, ,j m=  , and 
1

1
m

j
j

w
=

= , 

where jw  denotes the importance degree of the attribute jx . The DMs provide 
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all the possible values that the alternative iA  satisfies the attribute jx  represented 

by the HFEs ijh =
ij ijhγ ∈
 { }ijγ ( 1, 2, , ; 1, 2, , )i n j m= =  ,

 
which are 

contained in the hesitant fuzzy decision matrix H = ( )ij n mh ×  (see Table 1.5  

(Zhu et al. 2013a)). 

Table 1.5. The hesitant fuzzy decision matrix 

         
1x  2x    

mx  

1A  11h  12h    1mh  

2A  21h  22h    
2mh  

          

nA  1nh  2nh    
nmh  

              
Step 2. To normalize the preference information, we first transform  

H = ( )ij n mh ×  into the matrix B = ( )ij n mb ×  by using the formula (1.52), and 

then utilize the WHFBM (in general, we can take p 0≠ , and q 0≠ ) to 

aggregate all the preference values ijb ( 1,2, , )j n=   of the i th line and get the 

overall performance value ib  corresponding to the alternative iA : 
                  

                   ,
1 2( , , , )p q

i w i i imb WHFB b b b=                            (1.100) 
                  

Step 3. Calculate the scores ( )is b ( 1, 2, , )i n=   of ib ( 1, 2, , )i n=   and 

rank all the alternatives iA ( 1, 2, , )i n=   according to ( )is b ( 1, 2, , )i n=   

in descending order. 
In the following, we apply our approach to a MADM problem. 

                  
Example 1.17 (Zhu et al. 2013a). Let us consider a site selection problem. Three 

alternatives iA ( 1, 2,3)i =  are available. The DMs consider three attributes: 

1x (price), 2x (location), 3x (environment). Let the weight vector of the attributes 

jx ( 1,2,3)j =  be ( )T
0.5,0.3,0.2w = . Assume that the characteristics of the 

alternatives iA ( 1, 2,3)i =  with respect to the attributes jx ( 1,2,3)j =  are 

represented by the HFEs ijh =
ij ijhγ ∈
 { }ijγ ,

 
where ijγ  indicates the degree that the 
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alternative iA  satisfies the attribute jx . All ijh ( 1,2,3; 1,2,3)i j= =  are 

contained in the hesitant fuzzy decision matrix H = 3 3( )ijh × (see Table 1.6  

(Zhu et al. 2013a)). 
                  

Table 1.6. The hesitant fuzzy decision matrix 

 
1x  2x  3x  

1A  {0.6,0.7,0.8} {0.25}  {0.4,0.5} 

2A  {0.4} {0.4,0.5} {0.3,0.55,0.6}  

3A  {0.2,0.4} {0.6,0.5} {0.7,0.5} 
 

 

Considering that all the attributes jx ( 1,2,3)j =  are the benefit type 

attributes, the preference values of the alternatives ( 1, 2,3)iA i =  do not need 

normalization. We utilize the WHFBM (here, we take p = q = 1) to aggregate 

all the preference values ( 1, 2,3)ijh j =  of the i th line and get the overall 

performance value ih  with respect to the alternative iA  as:
 

                  

1h {0.1483,0.1514, ,0.1976}=  , 2h {0.1383,0.1446, ,0.1939}=   

3h {0.1818,0.1953, ,0.1788}=   
                  

Then, we calculate the scores of all the alternatives as: 
                  

1( )s h 0.1820= , 2( ) 0.1703s h = , 3( ) 0.1828s h =  

                  

Since 3 1 2( ) ( ) ( )s h s h s h> > , then we get the ranking of the HFEs as 

3h > 1h > 2h , consequently the ranking of the alternatives ( 1, 2,3)iA i =  is 

3 1 2A A A  . Thus, 3A  is the best alternative. 

Moreover, if we take p = q = 2, then  
                  

1 {0.1582,0.1612, ,0.2156}h =  , 2 {0.1460,0.1553, ,0.1935}h =   

3 {0.1886,0.2015, ,0.1812}h =   
                  

and calculate the scores of all the alternatives, thus we get 
                  

1( ) 0.1946s h = , 2( ) 0.1748s h = , 3( ) 0.1880s h =  
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Since 3 1 2( ) ( ) ( )s h s h s h> > , then the ranking of the alternatives ( 1, 2,3)iA i =  

is 1 3 2A A A  . Thus, the optimal alternative is 1A  in this case. 

Therefore, the ranking results also depend on the values of the parameters p  

and q  to some degree, and the proper values of the parameters should also be 

taken into account. Since the HFBM reduces to some other aggregation operators, 
such as the GHFM, the HFSM and the HFA operator, when q  approaches zero, it 

can only reflect “parting satisfaction” relationship of the aggregated arguments in 
such cases. We generally take the values of the two parameters as 1p q= =  in 

practice, which can capture the interrelationship between the aggregated 
arguments as much as possible.   

1.4   Hesitant Fuzzy Geometric Bonferroni Means  

As an extension of the geometric mean (GM), the geometric Bonferroni mean 
(GBM) is a very useful aggregation operator, which considers the 
interrelationships among arguments. Xia et al. (2013b) introduced the concept of 
GBM: 

Definition 1.27 (Xia et al. 2013b).  Let , 0p q > , and ( )1,2,...,ia i n=  be a 

collection of non-negative numbers. If 
                  

( ) ( )
1

, ( 1)
1 2

, 1

1
, ,...,

n
p q n n

n i j
i j
i j

GB a a a pa qa
p q

−

=
≠

= +
+ ∏              (1.101) 

                  
then ,p qGB  is called a geometric Bonferroni mean (BGM).  

In MADM, the performance of an alternative under an attribute may be 
represented by several possible values represented by a HFE. To aggregate all the 
performances of an alternative under all the attributes with connections among 
them, Zhu et al. (2012b) gave an extension of the GBM, which was defined as 
follows:  

                  

Definition 1.28 (Zhu et al. 2012b). Let , 0p q > , and ( )1,2,...,ih i n=  be a 

collection of HFEs, if 
                  

 

( ) ( ) ( )( )
2

, ( 1)
1 2

, 1

1
, ,...,

n
p q n n

n i j j i
i j
i j

HFGB h h h ph qh ph qh
p q

−
=

≠

= ⊗ ⊕ ⊗ ⊕
+

  

(1.102) 
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then ,p qHFGB  is called a hesitant fuzzy geometric Bonferroni mean (HFGBM).  

Based on the operational laws of the HFEs, we further develop the theorem 
related to the HFGBM as follows: 

                  

Theorem 1.32 (Zhu et al. 2012b).  Let 0p,q > , and ih ( )1, 2, ,i n=   be a 

collection of HFEs, then the aggregated value by using the HFGBM is a HFE, and 
                  

( ) ( )
, , ,

1

2
, ( 1)

1 2 ,
, 1

, , , 1 1
i j i j i j

p q
n

p q n n
n i j

i j
i j

HFGB h h h
ε τ

ε
<

+

−

∈ =
<

 
    = − −       

∏      (1.103) 

                  

where ( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕  can be considered as the “bonding 

satisfaction” factor used as a calculation unit, capturing the connection between 

ih  and jh , , 1, 2, , ,i j n i j=   ≠ . 

                  
Proof. By the operational laws of HFEs, we obtain  

                  

       ( ) ( ),i j i j j iph qh ph qhτ = ⊕ ⊗ ⊕                       (1.104)                 

                  
which is also a HFE, and 

                  

    ( ) ( )
2

, ( 1)
1 2 ,

, 1

1
, ,...,

n
p q n n

n i j
i j
i j

HFGB h h h
p q

τ −
=

<

 
 = ⊗
 +  

               (1.105) 

                  
Furthermore, we have 

                  

( ) ( )
, , , .

22
( 1)( 1)2

( 1)
, , ,

, 1 , 1 , 1i j i j i j

n nn nn n n
n n

i j i j i j
i j i j i j
i j i j i j

ε τ
τ τ ε

<

−−
−

= = =∈
< < <

 
      ⊗ = ⊗ = ∏        
 

  

                  

( )
, , , .

2
( 1)

,
, 1i j i j i j

n
n n

i j
i j
i j

ε τ
ε

<

−

=∈
<

  = ∏ 
  

                                     (1.106)                         
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and then 

( ) ( )
, , , .

1

2 2
( 1) ( 1)

, ,
, 1 , 1

1
1 1

i j i j i j

p q
n n

n n n n
i j i j

i j i j
i j i j

p q ε τ
τ ε

<

+

− −
= =∈

< <

 
      ⊗ = − − ∏   +      

      (1.107) 

                  
thus the proof is completed.  

We can see that ,i jτ  is a basic element, which Zhu et al. (2012b) called the 

hesitant fuzzy geometric Bonferroni element (HFGBE). The reasons they defined 
the HFGBE are that: for one it can fully represent the connection between two 
HFEs by two types of conjunction calculation; Second, after the original data 
being operated by two types of conjunction calculations, the values and quantity 
of them have been changed, and these changed basic arguments also change the 
performance of the aggregation operator. In the MADM problems, the HFGBE 
can reflect the advantage of HFGBM considering two factors in the aggregation 
process, which can take much more information into account.  

We treat the HFGBE as the “bonding satisfaction” factor, which is used to 
define the HFGBM. If we utilize the method we define this factor to other 
aggregation operators, they should perform differently from the original ones.  

Thus, in order to investigate the desirable properties of the HFGBM, we first 
discuss the HFGBE in detail. 

 

Theorem 1.33 (Zhu et al. 2012b).  Let 
i

hα  and 
i

hβ  be two collections of HFEs,  

              
, ,i j i jατ

<
= ( )i j

ph qhα α⊕ ⊗ ( )j i
ph qhα α⊕                   (1.108) 

                  

               ( ) ( ), ,i j i j i j j i
ph qh ph qhβ β β β βτ

<
= ⊕ ⊗ ⊕                   (1.109) 

                  

if for any 
i i

hα αγ ∈ , 
i i

hβ βγ ∈ , we have 
i iα βγ γ≤ , 

j jα βγ γ≤ , 

, 1, 2, , ,i j n=   i j≠ , then 
, , , ,i j i j i j i jα βτ τ

< <
≤ . 

                  

Proof.  Since 
i iα βγ γ≤  and 

j jα βγ γ≤ , , 1, 2, , ,i j n i j= ≠ , then we have 

                  

    ( ) ( ) ( ) ( )1 1 1 1 1 1
i j i j

q qp p

α α β βγ γ γ γ− − − ≤ − − −           (1.110) 

                  

( ) ( ) ( ) ( )1 1 1 1 1 1
j i j i

p pq q

α α β βγ γ γ γ− − − ≤ − − −           (1.111) 
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Additionally, we obtain 
                  

( ) ( ), ,i j i j i j j i
ph qh ph qhα α α α ατ

<
= ⊕ ⊗ ⊕  

                  

( ) ( ) ( )( ) ( ){ },
1 1 1 1 1 1 1 1

i j i j
i i j j

q qp p

h hα α α α
α α α α

γ γ
γ γ γ γ

∈ ∈

  = − − + − − − − − − −    
  

                  

( ) ( ) ( ) ( )( ){ },
1 1 1 1 1 1 1 1

j i j i
i i j j

p pq q

h hα α α α
α α α α

γ γ
γ γ γ γ

∈ ∈

  ⊗ − − + − − − − − − −    
  

                  

( ) ( ){ } ( ) ( ){ }
, ,

1 1 1 1 1 1
i j j i

i i j j i i j j

q pp q

h h h hα α α α α α α α
α α α α

γ γ γ γ
γ γ γ γ

∈ ∈ ∈ ∈

   
= − − − ⊗ − − −   
   

    

 

Let 
, , , ,i j i j i j i jα αε τ

< <
∈ , 

, , , ,i j i j i j i jβ βε τ
< <

∈ , for all , 1, 2, , ,i j n i j= < , we 

have 
, , , ,i j i j i j i jα βε ε

< <
≤  and  

, , , ,i j i j i j i jα βτ τ
< <

≤ , which completes the proof. 

                  

Theorem 1.34 (Zhu et al. 2012b).  Let 
i

hα  and 
i

hβ  be two collections of HFEs, 

( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕ , min{ }
ii

i i
h

h
γ

γ−

∈
=  , max{ }

ii

i i
h

h
γ

γ+

∈
=  , 

ihγ − −∈ , ihγ + +∈ , , 1, 2, , ,i j n i j= ≠ , then 

                  

( )( ) ( )( )2 2

, ,1 1 1 1
i i

p q p q

i j i j
h hγ γ

γ τ γ
− − + +

+ +− +
<

∈ ∈
− − ≤ ≤ − −             (1.112) 

                  

Proof.  Since ( )_ 1, 2, ,i i nγ γ γ +≤ ≤ =  , then  

                         

 ( ) ( ) ( ) ( )1 1 1 1 1 1 1
p q p qqp

i jγ γ γ γ
+ +− +− − ≤ − − − ≤ − −         (1.113) 

                  

( ) ( ) ( ) ( )1 1 1 1 1 1 1
p q p qp q

j iγ γ γ γ
+ +− +− − ≤ − − − ≤ − −        (1.114) 

                  
and 

( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕  
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( ) ( ){ } ( ) ( ){ }
, ,

1 1 1 1 1 1
i i j j i i j j

q pp q

i j j i
h h h hγ γ γ γ

γ γ γ γ
∈ ∈ ∈ ∈

   = − − − ⊗ − − −   
   
   (1.115) 

                  
which completes the proof. 

                  
Theorem 1.35 (Zhu et al. 2012b).  When we exchange the parameters p  and q , 

we obtain  
                  

                    
( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕

 

( ) ( ) , ,i j j i i j i jqh ph qh ph τ <= ⊕ ⊗ ⊕ =
                 

 (1.116) 

                  
which is the property of “idempotent commutativity” (Xu and Da 2012b). 

                  

Theorem 1.36 (Zhu et al. 2012b). When we take { }0i jh h h= = = , or 

i jh h h= =  { }1= , respectively, the corresponding results are valid: 

                  

( ) ( ) { }, , 0i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕ =                   (1.117) 

                  
or 

( ) ( ) { }, , 1i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕ =                  (1.118) 

                  
Based on the study above, we can further investigate some desirable properties 

of the HFGBM as follows: 
                  

Theorem 1.37 (Zhu et al. 2012b).  Let ( )
1 2
, , ,

n
h h hα α α  and  

( )
1 2
, , ,

n
h h hβ β β  be two collections of HFEs, if for any 

i i
hα αγ ∈ , 

i i
hβ βγ ∈ , 

we have 
i iα βγ γ≤  for all , 1, 2, , ,i j n i j= ≠ , then  

                  

( ) ( )
1 2 1 2

, ,, ,..., , ,...,
n n

p q p qHFGB h h h HFGB h h hα α α β β β≤         (1.119) 

                  
Proof. Since

 

                  

( ) ( ), ,

1 1

2 2

( 1) ( 1)

, 1 , 1
1 1 1 1

i j i j

p q p q
n n

n n n n

i j i j
i j i j

α βε ε
+ +

− −

= =
< <

      
      − − ∏ ≤ − − ∏
      

      
     (1.120) 
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then 

( ) ( ), ,
, , ,

1

2 2
( 1) ( 1)

, 1 , 1

1
1 1

i j i j
i j i j i j

p q
n n

n n n n

i j i j
i j i j

p q α α
ε τ

τ ε
<

+

− −

= =∈
< <

 
      ⊗ = − − ∏   +      

     

( ) ( ), ,
, , ,

1

2 2
( 1) ( 1)

, 1 , 1

1
1 1

i j i j
i j i j i j

p q
n n

n n n n

i j i j
i j i j

p q β β
ε τ

τ ε
<

+

− −

= =∈
< <

 
      ≤ ⊗ = − − ∏   +      

    

(1.121) 
                  

which completes the proof of the theorem. 
 

Theorem 1.38 (Zhu et al. 2012b).  Let ( )
1 2
, , ,

n
h h hα α α  and 

( )
1 2
, , ,

n
h h hβ β β  be two collections of HFEs, min{ }

ii

i i
h

h
γ

γ−

∈
=  , 

max{ }
ii

i i
h

h
γ

γ+

∈
=  , ihγ − −∈ , ihγ + +∈ , , 1, 2, , ,i j n=   i j≠ , then 

 

( )( ) ( )
1

2
,

1 21 1 1 1 , ,...,
i

p qp q p q
n

h
HFGB h h h

γ
γ

− −

++−

∈

 
  − − − − ≤  
   

  

               ( )( )
1

2

1 1 1 1
i

p qp q

hγ
γ

+ +

+++

∈

 
  ≤ − − − −  
   

                    (1.122) 

                  
Proof.  We have 

( )( ) ( )
1

1
22

( 1)
,

, 1
1 1 1 1 1 1

p q
np qp q

n n
i j

i j
i j

γ ε
+

++− −
=

<

      − − − − ≤ − − ∏        
 

 ( )( )
1

2

1 1 1 1
p qp q

γ
+++ ≤ − − − − 

 
         (1.123) 

                  

which completes the proof of the theorem. 
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Theorem 1.39 (Zhu et al. 2012b).  Let ih ( )1, 2, ,i n=   be a collection of 

HFEs, and ( )1 2, ,..., nh h h    any permutation of ( )1 2, ,..., nh h h . Apparently, we 

have  
                  

( ) ( )
2

, ( 1)
1 2 ,

, 1

1
, , ,

n
p q n n

n i j
i j
i j

HFGB h h h
p q

τ −
=

<

= ⊗
+

   

( )
2

,( 1)
1 2

, 1

1
( , ,..., )

n
p qn n

ij n
i j
i j

HFGB h h h
p q

τ −
=

<

= ⊗ =
+

     

(1.124) 
                  

where ( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕ , ( ) ( ), ,i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕    , 

, 1, 2, ,i j n=  , i j≠ . 

                  

Theorem 1.40 (Zhu et al. 2012b).  Let ih ( )1, 2, ,i n=   be a collection of 

HFEs, then 
                  

( ) ( ) ( )( )
2

, ( 1)
1 2

, 1

1
, ,...,

n
p q n n

n i j j i
i j
i j

HFGB h h h ph qh ph qh
p q

−
=

≠

= ⊗ ⊕ ⊗ ⊕
+

     

                  

              ( ) ( )( )
2

( 1)

, 1

1 n
n n

i j j i
i j
i j

qh ph qh ph
q p

−
=

≠

= ⊗ ⊕ ⊗ ⊕
+

        (1.125) 

                  

Theorem 1.41 (Zhu et al. 2012b).  Let ih ( )1, 2, ,i n=   be a collection of 

HFEs, if { }0ih h= = , then we have 

                  

( ) { },
1 2, ,..., 0p q

nHFGB h h h =                              (1.126) 
                  

and if { }1ih h= = , then we get  

                ( ) { },
1 2, ,..., 1p q

nHFGB h h h =                             (1.127) 

                  
Next, we change the parameters p  and q  of the HFGBM, and we can get 

some special cases as follows (Zhu et al. 2012b): 
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Case 1.  If 0q → , then we have 

                  

( ) ( ) ( )( )
2

, ( 1)
1 2

, 1

1
, ,...,

n
p q n n

n i j j i
i j
i j

HFGB h h h ph qh ph qh
p q

−
=

≠

= ⊗ ⊕ ⊗ ⊕
+

 

                  

( ) ( )
1

1

, 1

1 n
n n

i j
i j
i j

ph ph
p

−
=

≠

 
 = ⊗ ⊗
 
 

 

( )( )( ) ( )

1

1

1

, 1,

1 1 1 (1 ) 1 (1 )
i i j j

p
n

p p n n
i j

h h i j
i j

γ γ
γ γ −

∈ ∈ =
≠

 
    = − − − − − −       

∏  

( ),0
1 2, ,...,p

nHFGB h h h=                                                             (1.128) 

                  
which we call a generalized hesitant fuzzy geometric Bonferroni mean 
(GHFGBM).  

                  
Case 2.  If 1p =  and 0q → , then 

                  

( ) ( ) ( )
1

, 1
1 2

, 1
, ,...,

n
p q n n

n i j
i j
i j

HFGB h h h h h −
=

≠

= ⊗ ⊗  

  ( ) ( )( ) ( )
1

1

, 1,

1 (1 ) 1 (1 )
i i j j

n
n n

i j
h h i j

i j

γ γ
γ γ −

∈ ∈ =
≠

 
 = − − − − 
  
∏   (1.129)  

which we call a hesitant fuzzy geometric Bonferroni mean (HFGBM). 
                  

Case 3.  If 2p =  and 0q → , then 

                  

( ) ( ) ( )
1

, 1
1 2

, 1

1
, ,..., 2 2

2

n
p q n n

n i j
i j
i j

HFGB h h h h h −
=

≠

 
 = ⊗ ⊗
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( )( )( ) ( )

1

2
1

2 2 1

, 1,

1 1 1 (1 ) 1 (1 )
i i j j

n
n n

i j
h h i j

i j

γ γ
γ γ −

∈ ∈ =
≠

 
    = − − − − − −       

∏    

 ( )2,0
1 2, ,..., nHFGB h h h=                                    (1.130) 

                  
which we call a hesitant fuzzy square geometric Bonferroni mean (HFSGBM). 

                  
Case 4.  If 1p q= = , and let  

                  

                  ( ) ( ) { }
1,1 1,1
, ,

1,1 1,1
, ,

i j i j

i j i j j i i jh h h h
ε τ

τ ε
∈

= ⊕ ⊗ ⊕ =                 (1.131) 

                  
then 

                  

( ) ( ) ( )
2

, 1
1 2

, 1

1
, ,..., ( ) ( )

2

n
p q n n

n i j j i
i j
i j

HFGB h h h h h h h −
=

≠

 
 = ⊗ ⊕ ⊗ ⊕
 
 

 

                  

( ) ( )
1,1 1,1
, , ,

1

2
2

1,1 1,1( 1)
, 1 2

, 1

1 1 , ,...,
i j i j i j

n
n n

i j n
i j
i j

HFGB h h h
ε τ

ε
<

−

∈ =
<

 
    = − − =       

∏   (1.132) 

                  
which we call a hesitant fuzzy interrelated square geometric Bonferroni mean 
(HFISGBM). 

Now, we give an example to illustrate the results above: 
                  

Example 1.18 (Zhu et al. 2012b).  Assume that we have three HFEs, { }1 0.1h = , 

{ }2 0.2,0.4h =  and { }3 0.3h = . Then based on the operation laws of HFEs in 

Definition 1.7, we have  
                  

   1 2 {0.28,0.46}h h⊕ = , 2 1 {0.28,0.46}h h⊕ = , { }1 3 0.37h h⊕ =     

                  

   { }3 1 0.37h h⊕ = , { }2 3 0.44,0.58h h⊕ = , { }3 2 0.44,0.58h h⊕ =     

                  
and 
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( ) {1,1
1 2 3, , 0.0661,0.0784, 0.0726, 0.0863, 0.0932,HFGB h h h =  

}0.1027,0.0799,0.0950,0.1132  

                  
( ) {2,2

1 2 3, , 0.0991, 0.1156, 0.1065, 0.1245,0.1355,HFGB h h h =  

}0.1464,0.1146,0.1343,0.1584  

                  

( )1,0
1 2 3, , {0.0330,0.0416, 0.0524}HFGB h h h =  

                  

( )0,1
1 2 3, , {0.0330,0.0416, 0.0524}HFGB h h h =  

                  
and 

( )( )1,1
1 2 3, , 0.0872s HFGB h h h = ,  ( )( )1,0

1 2 3, , 0.0422s HFGB h h h =  

                  

( )( )2,2
1 2 3, , 0.1257s HFGB h h h = ,  ( )( )0,1

1 2 3, , 0.0422s HFGB h h h =  

                  
When the values of the parameters p  and q  change, more details can be found 

in Figs. 1.5-1.7 (Zhu et al. 2012b):  

 
                  

Fig. 1.5. Scores of the HFGBM ( , (0,40])p q p= ∈  
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Fig. 1.6. Scores of the HFGBM ( , (0, 40])p q p= ∈  

 

 
 

Fig. 1.7. Scores of the HFGBM ( 0, (0,40]; 0, (0,40])q p p q= ∈ = ∈  
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If the interrelationships among arguments reflected by the BM are an 
impersonal character, then the correlations among arguments represented by 
Choquet integral are a personal character. We often have to think through them in 
practical situations, which is more comprehensive. Now we combine the HFGBM 
with Choquet integral. We know that the HFGBE is a basic element used as a 
calculation unit, and we still utilize it in the hesitant fuzzy Choquet geometric 
Bonferroni mean (HFCGM). 

Let 
~ , ;i j i j

v
<

 be the 1n −  tuple 
( ) ( ) ( ){ }, , , , , ,(1) (2) ( ), , ,
i j i j i j i j i j i j nσ σ στ τ τ

< < <
…  which 

doesn’t have the element , ,i j i jτ < , and 
( ), , (1)i j i jστ

<
,

( ), , (2)i j i jστ
<

 ,…, 
( ), , ( )i j i j nστ

<
 are the 

ordered interval numbers in 
~ , ;i j i j

v
<

, such that 
( ) ( )0 0, , , ,( 1) ( )i j i j i j i jl lσ στ τ

< <− ≥ , 

0 3, 4,..., 2l n= − . Let 
( ){ }, , 0, ,( ) ( ) 0|

i j i j i j i jk lB l kσ στ
< <

= ≤ , when 2k ≥  and 

, , (1)i j i j
Bσ φ

<
= .  

Let { }1 2, , ..., nX x x x=  be a set of attributes, { }~ , ,i j
i jX X x x= −  the 

set of all attributes except ix  and jx . A fuzzy measure , ,i j i jm <  on ~ ,i jX  is 

( )~ ,
, , [0,1]i j

i j i jm X< → , satisfying the axioms below: 

                  

(1) ( ), , 0i j i jm φ< = . 

                  

(2) 
~ ,

, , ( ) 1i j
i j i jm X< = . 

                  

(3) ( ) ( ), , 1 , , 2i j i j i j i jm X m X< <≤  , if 1 2X X⊆ . 

                  
Let  

                  

( ) ( )( ), , , ,

~ , ;

, , , , ( ) , , ( 1)
, 1 i j i j i j i j

i j i jn

i j i j i j i j k i j i j k
i j
i j

m B m Bv σ σρ
< <

<

< < < −=
≠

= ⊕ −   , 1,2, , 2k n= −   

(1.133) 
                  

then the Choquet integral of 
~ , ;i j i j

v
<

 with respect to , ,i j i jm <  can be defined as: 

                  

, ,

, , , ,, ,

~ , ;

, ,

1
i j i j

i j i j i j i ji j i j

i j i j

m i j i jC
lv

δ ρρ

δ
<

< <<

<

<
∈

  = 
 

                          (1.134) 

                  
where , 1, 2, , , ; 1, 2, , 2i j n i j k n= ≠ = −  . Thus, we have 
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( ),
1 2 ( , ,...,p q

nHFCGB h h h  

( ) ( )( )
, ;

, ,

2

( 1)

, 1

1
i j i j

mi j i j
n nn C v

i j j i
i j
i j

ph qh ph qh
p q

<

<
  −
 
 

=
≠

 
  = ⊗ ⊕ ⊗ ⊕   +   

 



  (1.135) 

                  

where , 0p q > , then ,p qHFCGB  is called a hesitant fuzzy Choquet geometric 

Bonferroni mean (HFCGBM), and 
                  

( ) ( )
, ;

, ,

2

( 1)

,
1 2 ,

, 1

1
, ,...,

i j i j
C vmi j i j

n n
n

p q
n i j

i j
i j

HFCGB h h h
p q

τ

< 
 

<  
 

−

=
<

 
 = ⊗  +  
 




 

      ( )
, ;

, ,

, , ,

1
2

( 1)

,
, 1

1 1

i j i j
C vmi j i j

i j i j i j

p q
n n

n

i j
i j
i j

ε τ
ε

< 
 

<  
 

<

+
−

=∈
<

 
           = − − ∏              
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Example 1.19 (Zhu et al. 2012b).  Assume the same data in Example 1.17, let 

1p q= =  and  

                  

( ) ( ) ( )1,2 2,3 1,3 0m m mφ φ φ= = =   , { }( )1,3 2,3 0.4m h = , 

{ }( )1,2 2,3 0.3m h =  

                  

{ }( ) { }( )1,2 1,3 1,3 1,2 0.2m h m h= =  , { }( ) { }( )2,3 1,2 2,3 1,3 0.5m h m h= =   

                  

{ }( ) { }( ) { }( )1,2 2,3 1,3 1,3 2,3 1,2 2,3 1,2 1,3, , , 1m h h m h h m h h= = =    

                  
then we have  

                  

( )1,2 0.0201s τ = , ( )1,3 0.0365s τ = , ( )2,3 0.0744s τ =  
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and thus ( ) ( ) ( )2,3 1,3 1,2s s sτ τ τ> > . 

                  

{ }( )( ) { }( ) { }( )( )1,2 2,3 1,2 2,3 1,2 1,3 1,2 1,3 2,3 1,2 2,3( ) ,m h m m h h m hρ τ φ τ= − ⊕ −     

2,3 1,30.3 0.7τ τ= ⊕  

                  

{ }( )( ) { }( ) { }( )( )2,3 1,3 2,3 1,2 1,2 1,2 2,3 1,3 1,2 1,2 1,2( ) ,m h m m h h m hρ τ φ τ= − ⊕ −     

1,3 1,20.5 0.5τ τ= ⊕  

                  

{ }( )( ) { }( ) { }( )( )1,3 2,3 1,3 2,3 1,3 1,2 1,3 1,2 2,3 1,3 2,3( ) ,m h m m h h m hρ τ φ τ= − ⊕ −    

2,3 1,20.4 0.6τ τ= ⊕  

                  

1,2

~1,2

0.1769mC v
  = 
 

 ,  
1,3

~1,3

0.0062mC v
  = 
 

 ,  
2,3

~2,3

0.0263mC v
  = 
 

  

                  
Hence, we obtain 

( ) ( )
, ;

, ,

2

( 1)

,
1 2 ,

, 1

1
, ,...,

i j i j
C vmi j i j

n n
n

p q
n i j

i j
i j

HFGB h h h
p q

τ

< 
 

<  
 

−

=
<

 
 = ⊗  +  
 




 

                  

{ }0.6061, 0.6087, 0.6113, 0.6393, 0.6423, 0.6452, 0.6771, 0.6805, 0.6839=  

                  
In practical situation, we have to deal with the complicated situations, not only 

considering the importance of individual arguments but also the relations among 
them. In order to fully consider the connections among attributes in the MADM 
problems, Zhu et al. (2012b) introduced the weighted hesitant fuzzy geometric 
Bonferroni mean (WHFGBM) and the weighted hesitant fuzzy Choquet geometric 
Bonferroni mean (WHFCGBM) below:  

                  

Definition 1.29 (Zhu et al. 2012b).  Let ih ( )1, 2, ,i n=   be a collection of 

HFEs, and ( )T

1 2, , ..., nw w w w=  the weight vector of ih , where iw  indicates 

the importance degree of ih , satisfying 0iw > , 1, 2,...,i n= , and 
1

1
n

i
i

w
=

= . If 
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( ) ( ) ( )( )
2

( 1),
1 2

, 1

1
, ,..., j ji i

n
w ww w n np q

n i j j i
i j
i j

HFGB h h h ph qh ph qh
p q

−

=
≠

 
 = ⊗ ⊕ ⊗ ⊕
 +  

              

                                                              (1.137) 
                  

where , 0p q > , then ,p q
wHFGB  is called a weighted hesitant fuzzy geometric 

Bonferroni mean (WHFGBM).  
Let  

                  

               ( ) ( ), ,
j ji i

w ww ww
i j i j i j j iph qh ph qhτ < = ⊕ ⊗ ⊕                        (1.138) 

                  
then we have 

                  

Theorem 1.42 (Zhu et al. 2012b).  Let ih ( )1, 2, ,i n=   be a collection of 

HFEs, whose weight vector is ( )T

1 2, ,..., nw w w w= , which satisfies 0iw > , 

1, 2,...,i n= , and 
1

1
n

i
i

w
=

= . Then the aggregated value by using the 

WHFGBM is also a HFE, and 
                  

( ) ( )
2

, ( 1)
1 2 ,

, 1

1
, ,...,

n
p q w n n

w n i j
i j
i j

HFGB h h h
p q

τ −
=

<

= ⊗
+

 

( )
, , ,

1

2

( 1)
,

, 1
1 1

w w
i j i j i j

p q
n

w n n
i j

i j
i j

ε τ
ε

<

+

−

=∈
<

 
      = − − ∏        

   (1.139) 

                  
Next, we introduce an approach for MADM under hesitant fuzzy environment 

below (Zhu et al. 2012b): 
                  

Step 1.  For a MADM problem, let ( 1, 2,..., )iA i n=  be a collection of n  

alternatives, ( 1, 2,..., )jx j m=  a collection of m  attributes, whose weight 

vector is ( )T

1 2, ,..., mw w w w= ,  satisfying 0jw > , 1, 2, ,j m=  ,  and  
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1

1
m

j
j

w
=

= , where jw  denotes the importance degree of the attribute jx . The 

DMs provide all the possible values that the alternative iA  satisfy the attribute jx  

represented by the HFEs ijh =
ij ijhγ ∈
 { }ijγ ( )1, 2, , ; 1, 2, ,i n j m= =  ,

 

which are contained in the hesitant fuzzy decision matrix H = ( )ij n m
h

×
. 

Then we may transform the decision matrix H = ( )ij n mh ×  into the 

normalization matrix B = ( )ij n m
b

×
 by using the formula (1.52). 

                  
Step 2.  Utilize the WHFGBM (in general, we can take p 0≠  and q 0≠ ) to 

aggregate all the performance values ijb ( )1,2, ,j n=   of the i th line and get 

the overall performance value ib  corresponding to the alternative iA : ib =  

( ),
1 2, , ,p q

w i i imWHFB b b b . 

Step 3.  Calculate the scores ( )is b ( )1, 2, ,i n=   of ib ( )1, 2, ,i n=   and 

rank all the alternatives iA ( )1, 2, ,i n=   according to ( )is b ( )1, 2, ,i n=   

in descending order. 
                  

In the following, we apply the given method to a MADM problem: 
                  

Example 1.20 (Zhu et al. 2012b).  Let us consider a factory which intends to select 

a new site for new buildings. Three kinds of alternatives iA ( )1, 2,3i =  are 

available. The DMs consider three attributes to decide which site to choose: 

1x (price), 2x (location), 3x (environment). The weight vector of the attributes 

jx ( )1,2,3j =  is ( )0.5,0.3,0.2w
Τ= . Assume that the characteristics of the 

alternatives iA (i =  1,2,3)  with respect to the attributes jx ( )1,2,3j =  are 

represented by the HFEs ijh =
ij ijhγ ∈
 { }ijγ ,

 
where ijγ  indicates the degree that the 

alternative iA  satisfies the attribute jx . All ijh ( )1, 2,3; 1,2,3i j= =  are 

contained in the hesitant fuzzy decision matrix H = ( )
3 3ijh
×

(see Table 1.7  

(Zhu et al. 2012b)). 
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Table 1.7. The hesitant fuzzy decision matrix 

 
1x  2x  3x  

1A  { }0.6,0.7,0.8  { }0.25  { }0.4,0.5  

2A  { }0.4  { }0.4,0.5  { }0.3,0.55,0.6  

3A  { }0.2,0.4  { }0.6,0.5  { }0.7,0.5  

 
 

Considering that all the attributes jx ( )1,2,3j =  are the benefit type 

attributes, the performance values of the alternatives ( )1,2,3iA i =  do not need 

normalization. We first utilize the WHFGBM (here, we take p = q = 1) to 

aggregate all the performance values ( )1,2,3ijh j =  of the i th line and get the 

overall performance value ih  corresponding to the alternative iA , then we can 

calculate the scores of all the alternatives:
                   

( )1s h 0.7076= , ( )2 0.6766s h = , ( )3 0.6997s h =   
                  

Since ( ) ( ) ( )1 3 2s h s h s h> > , then the ranking of the HFEs: 1h > 3h > 2h , 

and thus, the ranking of the alternatives ( )1,2,3iA i =  is 1 3 2A A A  . 

Hence, 1A  is the best alternative. 

If we take 3p =  and 1q = , then we can calculate the scores of all the 

alternatives: 
                  

( )1 0.7270s h = , ( )2 0.6979s h = , ( )3 0.6825s h =  
                  

Since ( ) ( ) ( )1 2 3s h s h s h> > , then we can get the ranking of the HFEs, that 

is 1h > 2h > 3h , and thus, the ranking of the alternatives ( )1,2,3iA i =  is 

1 2 3A A A  . Hence, 2A  is the best choice. 

Zhu et al. (2013a) introduced the WHFBM as listed in Eq.(1.98) or (1.99), now, 
we use Eq.(1.98) to aggregate the same data, we obtain the scores of all the 
alternatives as below: 

                  

( )1s h 0.1820= , ( )2 0.1703s h = , ( )3 0.1828s h =  
                  

Then we give the ranking of ( )1,2,3iA i =  as 3 1 2A A A  .  
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Comparing the two ranking results, we can find a change in sequence 
happening among alternatives. That’s because the WHFGBM operator pays more 
attention to some arguments, whose performances are too high or too low, 
however, the WHFBM operator focuses on the whole arguments instead. So, the 

attribute values { }11 0.6,0.7,0.8h =  of the alternative 1A  affect the ranking in 

the end.  
Based on the above results, we know that the WHFBM and the WHFGBM 

have different emphases in the case of aggregating arguments, and when we 
change the values of the parameters p  and q , we also can get different rankings 

of the alternatives. In practical applications, we may use different operators and 
control parameters to deal with different situations according to the realism.  

Moreover, in practical applications, the preferences of the DMs should also be 
taken into account, and Choquet integral can deal with this situation. Thus we not 
only consider the importance of each attribute but also the correlations of 
attributes. Now, we combine the WHFGBM with Choquet integral as follows: 

Let 
~ , ;i j i j

wv
<

 be the 1n −  tuple 
( ) ( ) ( ){ }, , , , , ,(1) (2) ( ), , ,
i j i j i j i j i j i j

w w w
nσ σ στ τ τ

< < <
…  which 

doesn’t have the element , ,
w

i j i jτ < , and 
( ), , (1)i j i j

w
στ

<
,

( ), , (2)i j i j

w
στ

<
 ,…, 

( ), , ( )i j i j

w
nστ

<
 are the 

ordered interval numbers in
~ , ;i j i j

wv
<

, such that  ( ) ( )0 0, , , ,( 1) ( )i j i j i j i j

w w
l lσ στ τ

< <− ≥ , 

0 3,4,..., 2l n= − ; Let 
( ){ }, , 0, ,( ) ( ) 0|

i j i j i j i j

w w
k lB l kσ στ

< <
= ≤ , when 2k ≥  and 

(1), ,i j i j

wB
σ

φ
<

= . , ,i j i jm <  is a fuzzy measure on ~ ,i jX  defined previously. Let  

                  

( ) ( )( ) ( ) ( )( ), , , , , ,, , ( ) , , ( 1)
, 1

j ji i

i j i j i j i j i j i j

n
w ww ww w w

i j j i i j i j k i j i j k
i j
i j

ph qh ph qh m B m Bσ σρ
< < << < −=

≠

= ⊗ ⊕ ⊗ ⊕ −  

                                                               (1.140) 

where 1,2, , 2k n= − , then Choquet integral of 
~ , ;i j i j

wv
<

 with respect to 

, ,i j i jm <  can be defined as: 
                  

, ,

, , , ,, ,

~ , ;

, ,

1
i j i j

w ww
i j i j i j i ji j i j

i j i j
w w
m i j i jC w l

v
δ ρρ

δ
<

< <<

<

<
∈

 
=  

 
                  (1.141) 

                  
where , 1, 2, , , ; 1, 2, , 2i j n i j k n= ≠ = −  . 
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Hence, we have  
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1 2 ( , ,...,p q

w nHFCGB h h h  

( ) ( )( )
, ;

, ,

2

( 1)
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1
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≠
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(1.142) 
                  

where , 0p q > , then ,p q
wHFCGB  is called a weighted hesitant fuzzy geometric 

Bonferroni mean (WHFCGBM), and 
                  

( ) ( )
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( 1)

,
1 2 ,

, 1

1
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Example 1.21  (Zhu et al. 2012b).  Assume that the attributes have correlations 
with each other, and 

                  

( ) ( ) ( )1,2 2,3 1,3 0m m mφ φ φ= = =   , { }( )1,3 2,3 0.4m h =  

{ }( )1,2 2,3 0.3m h =  

                  

{ }( ) { }( )1,2 1,3 1,3 1,2 0.2m h m h= =   

{ }( ) { }( )2,3 1,2 2,3 1,3 1,20.5m h m h m= =     

                  

{ }( ) { }( ) { }( )2,3 1,3 1,3 2,3 1,2 2,3 1,2 1,3, , , 1h h m h h m h h= = =   

                  
Utilizing the data in Table 1.7, and let 1p q= = , we have 
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( )1 0.8927s h = , ( )2 0.8823s h = , ( )3 0.9334s h =  

and thus 3 1 2A A A  . 

1.5   Hesitant F uzzy Aggregation Operators  

1.5   Hesitant Fuzzy Aggregation Operators Based on Quasi- 
Arithmetic Means and Induced Idea 

1.5   Hesitant F uzzy Aggregation Operators  

Quasi-arithmetic means (Hardy et al. 1934) and the induced idea (Yager and Filev 
1999) are hot topics in aggregation, about which a lot of work has been done. 
Yager and Filev (1999) provided a generalization of the process used for ordering 
the argument values and introduced a more general type of OWA operator (Yager 
1988), which they named the induced ordered weighted averaging operator. 
Merigó and Casanovas (2011a) presented the uncertain induced quasi-arithmetic 
OWA operator. It is an extension of the OWA operator that uses the main 
characteristics of the induced OWA, quasi-arithmetic OWA, and uncertain OWA 
operators (Xu and Da 2002a). Xu and Xia (2011a) investigated the induced 
generalized aggregation operators under intuitionistic fuzzy environments, 
including the induced generalized intuitionistic fuzzy Choquet integral operators 
and the induced generalized intuitionistic fuzzy Dempster–Shafer operators, etc., 
and gave their application in MADM. See Xu and Cai (2010a, 2012a) for more 
details on intuitionistic fuzzy aggregation techniques.  

Usually, the weight vectors of the aggregation operators are assumed known, 
not reflecting the correlation of the aggregated arguments. To obtain the weight 
vector more objectively, the study of the correlation among the aggregation 
arguments is necessary. More and more researchers have been paying attention to 
this issue. Yager (2001) introduced the power average to provide an aggregation 
operator which allows argument values to support each other in the aggregation 
process, based on which, Xu and Yager (2010) developed a power geometric 
operator and its weighted form, developed a power ordered geometric operator 
and a power ordered weighted geometric operator, and studied some of their 
properties. Xu and Cai (2012b) applied the power aggregation idea to uncertain 
environments, and gave some methods for group decision making with interval 
fuzzy preference relations. Xu (2011) developed a series of power aggregation 
operators for intuitionistic fuzzy information, then applied them to develop some 
approaches to intuitionistic fuzzy multi-attribute group decision making. In 
MADM, to reflect the correlation between attributes, Choquet integral (1953) is 
another important technique providing a type of operator used to measure the 
expected utility of an uncertain event, and has been applied in many fields. Yager 
(2004b) introduced the idea of order induced aggregation to Choquet aggregation 
operator and defined an induced Choquet ordered averaging operator, which 
allows the ordering of the arguments to be based upon some other associated 
variables instead of ordering the arguments based on their values. Tan and Chen 
(2009) developed an induced Choquet ordered averaging operator and applied it to 
aggregate fuzzy preference relations in group decision making. Xu (2010a), Tan 
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and Chen (2010) applied Choquet integral to intuitionistic fuzzy environment and 
proposed some intuitionistic fuzzy aggregation techniques.  

It is noted that the number of values in different HFEs may be different, and the 

values are usually out of order, let hl  be the number of values in h . Then, we can 

arrange them in any order for convenience. We arrange the elements in h  in 

decreasing order, and let ( )ihσ ( 1,2, , hi l=  ) be the i th smallest value in h .  

Xu and Xia (2011b,c) defined a distance measure for HFSs, which is also 
suitable for HFEs described as follows: 

                  

Definition 1.30 (Xu and Xia 2011b,c).  For two HFEs 1h  and 2h , the distance 

measure between 1h  and 2h , denoted as 1 2( , )d h h , should satisfy the following 

properties: 
                  

(1) 1 20 ( , ) 1d h h≤ ≤ . 

                  

(2) 1 2( , ) 0d h h =  if and only if 1 2h h= . 

                  

(3) 1 2 2 1( , ) ( , )d h h d h h= . 

                  

Let { }
1 2

max ,h hl l l= . To operate correctly, Xu and Xia (2011b,c) gave the 

following regulation: 

When 
1 2h hl l≠ , we can make them equivalent through adding values to the 

HFEs that has less number of elements. In terms of pessimistic principles, the 
smallest element can be added while the opposite case will be adopted following 

optimistic principles. In our work, we adopt the former. Specifically, If 
1 2h hl l< , 

then 1h  should be extended by adding the minimum value in it until it has the 

same length with 2h ; If 
1 2h hl l> , then 2h  should be extended by adding the 

minimum value in it until it has the same length with 1h .  

Moreover, we can give another important property that 1 2( , )d h h  should 

satisfy, that is:  
                  

(4) For three HFEs 1h , 2h  and 3h , which have the same length l , if 
( ) ( ) ( )

1 2 3
i i ih h hσ σ σ≤ ≤ , 1,2, ,i l=  , then  

                  

                1 2 1 3( , ) ( , )d h h d h h≤ , 2 3 1 3( , ) ( , )d h h d h h≤                    (1.144) 
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Based on the well-known Hamming distance, the hesitant normalized 
Hamming distance is defined as follows: 

                  

                     ( ) ( )
1 2 1 2

1

1
( , )

l
i i

i

d h h h h
l

σ σ

=
= −                                   (1.145)   

                  
In fact, we have 

                  

( ) ( ) ( ) ( )
1 2 1 2 1 3 1 3

1 1

1 1
( , ) ( , )

l l
i i i i

i i

d h h h h h h d h h
l l

σ σ σ σ

= =
= − ≤ − =        (1.146) 

                  
and 

                  

( ) ( ) ( ) ( )
2 3 2 3 1 3 1 3

1 1

1 1
( , ) ( , )

l l
i i i i

i i

d h h h h h h d h h
l l

σ σ σ σ

= =
= − ≤ − =         (1.147) 

                  
Similarly, we can prove the other distance measures defined by Xu and Xia 

(2011b,c) also satisfy (4). 
                  

Definition 1.31 (Sugeno 1974; Wang and Klir 1992; Denneberg 1994).  A 
normalized measure m  on the set X  is a function : ( ) [0,1]m Xξ →  

satisfying the following axioms: 
                  

(1) ( ) 0m φ = , ( ) 1m X = . 

                  

(2) 1 2X X⊆  implies 1 2( ) ( )m X m X≤  , for all 1 2,X X X⊆ . 

                  

(3) 1 2 1 2 1 2( ) ( ) ( ) ( ) ( )m X X m X m X m X m Xη= + +      , for all 1 2,X X X⊆  

and 1 2X X φ= , where ( 1, )η∈ − ∞ . 

                  
Especially, if 0η = , then (3) in Definition 1.31 reduces to the axiom of 

additive measure 1 2 1 2( ) ( ) ( )m X X m X m X= +   , which indicates that there is no 

interaction between 1X  and 2X ; If 0η > , then 
1 2 1 2( ) ( ) ( )m X X m X m X> +   , 

which implies that the set 1 2{ , }X X  has multiplicative effect; If 0η < , then 

1 2 1 2( ) ( ) ( )m X X m X m X< +   , which implies that the set 1 2{ , }X X  has 

substitutive effect, by the parameter η , the interaction between sets or elements of 

set can be represented.  
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Let 1 2{ , , , }nX x x x=   be a finite set, then 
1

n

i
i

x X
=

= . To determine the 

normalized measure on X  avoiding the computational complexity, Sugeno 
(1974) gave the following equation: 

          

( )
1

1

1

1
1 ( ) 1 , 0

( )

( ),                   0 

n

in
i

i ni

i
i

m x

m X m x

m x

η η
η

η

=

=

=

  + − ≠     = =  
   =
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       (1.148) 

                  
and the value of η  can be uniquely determined from ( ) 1m X = , which can be 

written as:  
                  

( )
1

1 1 ( )
n

i
i

m xη η
=

+ = +∏                                         (1.149) 

                  

Especially, for every subset X X⊆ , we have 
                  

1
(1 ( )) 1 , 0

( )
( ),                   0 

i

i

i
x X

i
x X

m x
m X

m x

η η
η

η
∈

∈

  
+ − ≠     = 

 =


∏



 



                     (1.150) 

                  
The aggregation (Fodor et al. 1995) based on the quasi-arithmetic means 

(Hardy et al. 1934) generalizes a wide range of aggregation operators, and has 
been extended to aggregate many kinds of fuzzy information (Wang and Hao 
2006; Merigó and Gil-Lafuente 2009; Xu and Xia 2011a; Merigó and Casanovas 
2011a). In this section, we apply the quasi-arithmetic means to aggregate hesitant 
fuzzy information: 

                  

Definition 1.32 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and 1 2( , , , )nw w w w Τ=   the weight vector of ih ( 1, 2, , )i n=  , such 

that 
1

1
n

i
i

w
=

=  and 0iw ≥ , 1, 2, ,i n=  . Let QHFWA: nΘ → Θ , if 

QHFWA
1 1 2 2

1
1 2

, , , 1

( , , , ) ( )
n n

n

n i i
h h h i

h h h w
γ γ γ

φ φ γ−

∈ ∈ ∈ =

  =   
  



        (1.151) 
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then QHFWA is called a quasi hesitant fuzzy weighted agregation (QHFWA) 
operator, where ( )g γ  is a strictly continuous monotonic function.  

It is noted that, when ( )g γ  is given different functions, we can get different 

aggregation operators, such as: 
                      

(1) If ( ) λφ γ γ= , then 

    QHFWA
1 1 2 2

1

1 2
, , , 1

( , , , )
n n

n

n i i
h h h i

h h h w
λ

λ

γ γ γ
γ

∈ ∈ ∈ =

 
  =   
   



          (1.152) 

                      

(2) If ( ) 1 (1 )λφ γ γ= − − , then 

QHFWA
1 1 2 2

1

1 2
, , , 1

( , , , ) 1 (1 )
n n

n

n i i
h h h i

h h h w
λ

λ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − −  
   



      (1.153)           

(3) If ( ) sin
2

πφ γ γ =  
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

( , , , ) arcsin sin
2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

πγπ
∈ ∈ ∈ =

  =   
  



    (1.154) 

                      

(4) If ( ) 1 sin (1 )
2

πφ γ γ = − − 
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

(1 )
( , , , ) 1 arcsin sin

2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

π γπ
∈ ∈ ∈ =

 − = −  
  



    

(1.155)      

(5) If ( ) cos
2

πφ γ γ =  
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

( , , , ) arccos cos
2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

πγπ
∈ ∈ ∈ =

  =   
  



     (1.156) 

                      

(6) If ( ) 1 cos (1 )
2

πφ γ γ = − − 
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

(1 )
( , , , ) 1 arccos cos

2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

π γπγ
∈ ∈ ∈ =

 − = −  
  



    

(1.157)      
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(7) If ( ) tan
2

πφ γ γ =  
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

( , , , ) arctan tan
2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

πγπ
∈ ∈ ∈ =

  =   
  



    (1.158)           

                      

(8) If ( ) 1 tan (1 )
2

πφ γ γ = − − 
 

, then 

QHFWA
1 1 2 2

1 2
, , , 1

(1 )
( , , , ) 1 arctan tan

2 2n n

n
i

n i
h h h i

h h h w
γ γ γ

π γπ
∈ ∈ ∈ =

 − = −  
  



    

(1.159)     

(9) If ( ) γφ γ λ= , , 0b λ > , 1λ ≠ , then 

                       

QHFWA
1 1 2 2

1 2
, , , 1

( , , , ) log i

n n

n

n b i
h h h i

h h h w γ

γ γ γ
λ

∈ ∈ ∈ =

  =   
  



         (1.160)         

                      

(10)  If 1( ) 1 b γφ γ −= − , , 0b λ > , 1λ ≠ , then 

                       

QHFW
1 1 2 2

1
1 2

, , , 1

( , , , ) 1 log i

n n

n

n b i
h h h i

h h h w γ

γ γ γ
λ −

∈ ∈ ∈ =

  = −  
  



        (1.161)     

                       

(11)  If ( )
(1 )

λ

λ λ
γφ γ

γ γ
=

+ −
, then 

                       

QHFWA 1 2( , , , )nh h h  

1 1 2 2

1

1

1 1
, , ,

1 1

(1 )

1
(1 ) (1 )

n n

n
i i

i i i

h h h
n n

i i i i

i ii i i i

w

w w

λ λ

λ λ

γ γ γ λ λλ λ

λ λ λ λ

γ
γ γ

γ γ
γ γ γ γ

=

∈ ∈ ∈

= =

 
    + −  =  

    
+ −    + − + −     



 

     

(1.162)    
                       

(12)  If 
(1 ) (1 )

(
(1 ) (1 )

)
λ λ

λ λ

γ γ
γ

γ γ
φ + − −

=
+ + −

, 0λ > , then 
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QHFWA 1 2( , , , )nh h h  

                       

1 1 2 2

1 1

1 1

1
, , ,

1

(1 ) (1 ) (1 ) (1 )
1 1

(1 ) (1 ) (1 ) (1 )

(1 ) (1 ) (1 ) (1 )
1 1

(1 ) (1 ) (1 ) (1 )

n n

n n
i i i i

i i
i ii i i i

h h h
n

i i i i
i i

i ii i i i

w w

w w

λ λ λ λλ λ

λ λ λ λ

γ γ γ λ λ λ λλ

λ λ λ λ

γ γ γ γ
γ γ γ γ

γ γ γ γ
γ γ γ γ

= =

∈ ∈ ∈

= =

   + − − + − −+ − −   + + − + + −   =
 + − − + − −+ + − + + − + + − 

 



 1

1

n λ

 
 
  
 
  
  
   



 

                       

1 1 2 2

1 1

1 1

1 1
, , ,

1 1

(1 ) (1 )
(1 ) (1 ) (1 ) (1 )

(1 ) (1 )

(1 ) (1 ) (1 ) (1 )

n n

n n
i i

i i
i ii i i i

h h h
n n

i i
i i

i ii i i i

w w

w w

λ λλ λ

λ λ λ λ

γ γ γ λ λλ λ

λ λ λ λ

γ γ
γ γ γ γ

γ γ
γ γ γ γ

= =

∈ ∈ ∈

= =

 
   + − −    + + − + + −    =  
    + −+    + + − + + −     

 

 

  

(1.163) 

(13)  If 
2

(
(2 )

)
λ

λ λ

γ
γ

γ γ
φ =

− +
, 0λ > , then 

                       
QHFWA 1 2( , , , )nh h h  

1 1 2 2

1

1

1 1
, , ,

1 1

2
2

(2 )

2 2
2

(2 ) (2 )

n n

n
i

i
i i i

h h h
n n

i i
i i

i ii i i i

w

w w

λ λ

λ λ

γ γ γ λ λλ λ

λ λ λ λ

γ
γ γ

γ γ
γ γ γ γ

=

∈ ∈ ∈

= =

 
    − +  =  

    
− +    − + − +     



 

  

                       

1 1 2 2

1

1

1 1
, , ,

1 1

2
(2 )

(2 )
(2 ) (2 )

n n

n
i

i
i i i

h h h
n n

i i
i i

i ii i i i

w

w w

λ λ

λ λ

γ γ γ λ λλ λ

λ λ λ λ

γ
γ γ

γ γ
γ γ γ γ

=

∈ ∈ ∈

= =

 
    − +  =  

    − +    − + − +     



 



     

(1.164) 
                       

It is pointed out that in (1), (2), (9)-(13), if 1λ = , then  
                       

QHFWA
1 1 2 2

1 2
, , , 1

( , , , )
n n

n

n i i
h h h i

h h h w
γ γ γ

γ
∈ ∈ ∈ =

 =  
 



                (1.165) 
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In fact, based on the ordered modular averages (OMAs) proposed by Mesiar 
and Mesiarová-Zemánková (2011), we can further generalize the QHFWA 
operator as follows: 

                       

Definition 1.33 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and 1 2( , , , )nw w w w Τ=   the weight vector of ih ( 1, 2, , )i n=  , such 

that 
1

1
n

i
i

w
=

=  and 0iw ≥ , 1, 2, ,i n=  . Let HFMWA: nΘ → Θ , if 

       HFMWA
1 1 2 2

1 2
, , , 1

( , , , ) ( )
n n

n

n i i i
h h h i

h h h w
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 



            (1.166) 

                       
then HFMWA is called a hesitant fuzzy modular weighted averaging (QHFWA) 

operator, where iφ ( 1, 2, ,i n=  ) are strictly continuous monotonic functions, 

which can be replaced by the functions discussed in Eqs.(1.152)-(1.164). 
                       

Definition 1.34 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and 1 2( , , , )nw w w w Τ=   the weight vector of ih ( 1, 2, , )i n=  , such 

that 
1

1
n

i
i

w
=

=  and 0iw ≥ , 1, 2, ,i n=  . Let HFMWG: nΘ → Θ , if 

HFMWG ( )
1 1 2 2

1 2
, , , 1

( , , , ) ( ) i

n n

n
w

n i i
h h h i

h h h
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 
∏


        (1.167) 

                       
then HFMWG is called the hesitant fuzzy modular weighted geometric (HFMWG) 

operator, where iφ ( 1, 2, ,i n=  ) are strictly continuous monotonic functions, 

which can be replaced by the functions discussed in Eqs.(1.152)-(1.164). 

Especially, if 1 2( ) ( ) ( ) ( )nφ γ φ γ φ γ φ γ= = = = , then the HFMWA and 

HFMWG operators reduce to the following: 
                       

        HFMWA
1 1 2 2

1 2
, , , 1

( , , , ) ( )
n n

n

n i i
h h h i

h h h w
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 



          (1.168) 

                       

HFMWG ( )
1 1 2 2

1 2
, , , 1

( , , , ) ( ) i

n n

n
w

n i
h h h i

h h h
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 
∏


         (1.169) 
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If 1 2( ) ( ) ( )nφ γ φ γ φ γ γ= = = = , then the HFMWA and HFMWG 

operators reduce to the following: 

         HFMWA
1 1 2 2

1 2
, , , 1

( , , , )
n n

n

n i i
h h h i

h h h w
γ γ γ

γ
∈ ∈ ∈ =

 =  
 



            (1.170) 

                               

     HFMWG
1 1 2 2

1 2
, , , 1

( , , , ) i

n n

n
w

n i
h h h i

h h h
γ γ γ

γ
∈ ∈ ∈ =

 =  
 
∏


            (1.171) 

                       
In the above defined aggregation operators (1.151)-(1.171), the weight vectors 

are assumed known, however, in many practical problems, they are unknown and 
the aggregated arguments have connections among them, and the weight vectors 
should better reflect this issue.  

Motivated by the power average (PA) operator (Yager 2001), we give one 
method to determine the weight vector of the proposed aggregation operators: 

Let 

1

(1 ( ))

(1 ( ))

i
i n

i
i

T h
w

T h
=

+=
+

, 1, 2, ,i n=                            (1.172) 

                       
where 

                                      

1

( ) ( , )
n

i i j
j
j i

T h Sup h h
=
¹

= å , 1, 2, ,i n=                     (1.173) 

and ( , )i jSup h h  is the support for ih  from jh , with the conditions: 
                       

(1) ( , ) [0,1]i jSup h h ∈ . 

                       

(2) ( , ) ( , )i j j iSup h h Sup h h= . 

                       

(3) 
1 2

( , ) ( , )i j k kSup h h Sup h h≥ , if 
1 2

( , ) ( , )i j k kd h h d h h< , where d  is a 

distance measure. 
                       
Let ( , )i jSup h h a= , for all i j≠ , then 
                       

1

(1 ( )) 1

(1 ( ))

i
i n

i
i

T h
w

n
T h

=

+= =
+

, 1, 2, ,i n=                            (1.174)  



108 1   Hesitant Fuzzy Aggregation Operators and Their Applications 

 

which indicates that when all the supports are the same, then the weights of 
arguments are also the same. 

If we combine the QHFWA, HFMWA and HFMWG operators, respectively, 
then we have 

                       

QHFWA
1 1 2 2

1 1
1 2

, , ,

1

(1 ( )) ( )
( , , , )

(1 ( ))n n

n

i i
i

n n
h h h

i
i

T h
h h h

T h
γ γ γ

φ γ
φ − =

∈ ∈ ∈

=

  +    =  
  +    




     (1.175) 

HFMWA
1 1 2 2

1
1 2

, , ,

1

(1 ( )) ( )
( , , , )

(1 ( ))n n

n

i i i
i

n n
h h h

i
i

T h
h h h

T h
γ γ γ

φ γ
=

∈ ∈ ∈

=

 +  =  
 +
  




        (1.176) 

                       

HFMWG ( )
( )

1 ( )

1 ( )
1

1 1 2 2

1 2
, , , 1

( , , , ) ( )

T hi
n

T hi
i

n n

n

n i i
h h h i

h h h
γ γ γ

φ γ

+

+
=

∈ ∈ ∈ =

 
 

=  
 
 

∏


        (1.177) 

                       

Based on Choquet integral, we can let 1( ) ( )i i iw m X m X −= −  , where 

iX = 1 2{ , , , }ix x x  when 1i ≥  and 0X = ∅ , and in this case, we have 

                       

QHFWA ( )
1 1 2 2

1
1 2 1

, , , 1

( , , , ) ( ) ( ) ( )
n n

n

n i i i
h h h i

h h h m X m X
γ γ γ

φ φ γ−
−

∈ ∈ ∈ =

  = −  
  



     

(1.178)        
                       

HFMWA ( )
1 1 2 2

1 2 1
, , , 1

( , , , ) ( ) ( ) ( )
n n

n

n i i i i
h h h i

h h h m X m X
γ γ γ

φ γ−
∈ ∈ ∈ =

 = − 
 



    

(1.179)         
                       

HFMWG ( ) 1

1 1 2 2

( ) ( )

1 2
, , , 1

( , , , ) ( ) i i

n n

n
m X m X

n i i
h h h i

h h h
γ γ γ

φ γ −−

∈ ∈ ∈ =

 =  
 
∏  


     (1.180)  

                           
We can find that although both of these two weight-determined methods reflect 

the connections of the arguments, the former is more objective, because that it is 
based on the support degree between each two pair of arguments, while the latter 
is only based on the given normalized measures. Thus, the former can be used to 
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determine the weight vector of the DMs in group decision making by calculating 
the distance or similarity between each other, while the latter can be used to 
determine the weight vector of attributes by measuring the correlations among 
them. 

If arguments are ordered first before being aggregated, we can get another 
series of popular aggregation operators, the OWA (Yager 1988) operators. In this 
section, we extend the OWA operators to aggregate hesitant fuzzy information. 

                       

Definition 1.35 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and ( )ihσ  the i th largest of them. Let QHFOWA: nΘ → Θ , if   

 

QHFOWA
(1) (1) (2) (2) ( ) ( )

1
1 2 ( )

, , , 1

( , , , ) ( )
n n

n

n i i
h h h i

h h h
σ σ σ σ σ σ

σ
γ γ γ

φ ωφ γ−

∈ ∈ ∈ =

  =   
  



    (1.181)          

                       
then QHFOWA is called a quasi hesitant fuzzy ordered weighted aggregation 
(QHFOWA) operator, where ( )φ γ  is a strictly continuous monotonic function, 

1 2( , , , )nω ω ω ω Τ=   is the associated weight vector with 
1

1
n

i
i

ω
=

= , and 

0iω ≥ , 1, 2,...,i n= .  

Similarly, Liao and Xu (2013c) gave the QHFOWG operator as follows: 

Definition 1.36 (Liao and Xu 2013c).  Let jh ( 1, 2, ,j n=  ) be a collection of 

HFEs and ( )jhσ  the j th largest of them. Let QHFOWG: nΘ → Θ , if 
                       

QHFOWG ( )
(1) (1) ( 2) ( 2) ( ) ( )

1
1 2 ( )

, , , 1

, , , ( )j

n n

n

n j
h h h j

h h h
σ σ σ σ σ σ

ω
σ

γ γ γ
φ φ γ−

∈ ∈ ∈ =

   =   
   

∏


   

(1.182) 
                       

then QHFOWG is called a quasi hesitant fuzzy ordered weighted geometric 
(QHFOWG) operator, where ( )φ γ  is a strictly continuous monotonic function, 

( )1 2, , , nω ω ω ω Τ=   is the associated weight vector with 
1

1
n

i
i

ω
=

= , and 

0jω ≥ , 1, 2,...,j n= . 

                       

Definition 1.37 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and ( )ihσ  the i th largest of them. Let HFMOWA: nΘ → Θ , if 
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HFMOWA
(1) (1) (2) (2) ( ) ( )

1 2 ( ) ( )
, , , 1

( , , , ) ( )
n n

n

n i i i
h h h i

h h h
σ σ σ σ σ σ

σ σ
γ γ γ

ωφ γ
∈ ∈ ∈ =

 =  
 



   (1.183) 

                       
then HFMOWA is called a hesitant fuzzy modular ordered weighted averaging 

(QHFOWA) operator, where iφ ( 1, 2, ,i n=  ) are strictly continuous monotonic 

functions, which can be replaced by the functions discussed in Eqs.(1.152)-

(1.164), 1 2( , , , )nω ω ω ω Τ=   is the associated weight vector with 
1

1
n

i
i

ω
=

= , 

and 0iω ≥ , 1, 2,...,i n= . 

                       

Definition 1.38 (Xia et al. 2013a).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and ( )ihσ  the i th largest of them. Let HFMOWG: nΘ → Θ , if 

                       

  HFMOWG ( )
1 1 2 2

1 2 ( ) ( )
, , , 1

( , , , ) ( )
i

n n

n

n i i
h h h i

h h h
ω

σ σ
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 
∏


      (1.184) 

                       
then HFMOWG is called a hesitant fuzzy modular ordered weighted geometric 

(HFMWG) operator, where iφ ( 1, 2, ,i n=  ) are strictly continuous monotonic 

functions, which can be replaced by the functions discussed in Eqs.(1.152)-

(1.164), 1 2( , , , )nω ω ω ω Τ=   is the associated weight vector with 
1

1
n

i
i

ω
=

= , 

and 0iω ≥ , 1, 2,...,i n= . 

Now we can give two methods to determine the weight vectors associated with 
the QHFOWA, QHFOWG, HFMOWA and HFMOWG operators: 

Considering the support degrees between the aggregated arguments, (i iω =  

1,2,..., )n  can be a collection of weights such that 

                       

1i i
i

G G
g g

TV TV
ω −   = −   

   
, ( )

1

i

i j
j

G Vσ
=

= , 
( )

1

n

i
i

TV Vσ
=

= , ( ) ( )1 ( )i iV T hσ σ= +  

(1.185) 
                       

and ( )( )iT hσ  denotes the support of the i th largest HFE ( )ihσ  by all the other 

HFEs, i.e.,  
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( )( ) ( ) ( )
1

( ) ,
n

i i j
j
j i

T h Sup h hσ σ σ
=
≠

=                             (1.186) 

where ( )( ) ( ),i jSup h hσ σ  indicates the support of i th largest HFE ( )ihσ  for the 

j th largest HFE ( )jhσ , and : [0,1] [0,1]g →  is a BUM function, having the 

properties:  
                       

(1) (0) 0g = . 

                       
(2) (1) 1g = . 

                       
(3) ( ) ( )g x g y≥ , if x y> . 

                       
Especially, if ( )g x x= , then  

                       

QHFOWA 1 2( , , , )nh h h  
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( )(1) (1) ( 2) ( 2 ) ( ) ( )

( ) ( )
1 1

, , ,

( )
1

1 ( ) ( )

1 ( )n n

n

i i
i

n
h h h

i
i

T h

T hσ σ σ σ σ σ

σ σ

γ γ γ
σ

φ γ
φ − =

∈ ∈ ∈

=

  +    =  
  +    




  

                       

= QHFWA 1 2( , , , )nh h h                                                            (1.187)  

                       

QHFOWG ( )1 2, , , nh h h  

( )
( )

1 ( )( )

1 ( )( )
1

(1) (1) (2) (2) ( ) ( )

1
( )

, , , 1

( )

T h j
n

T h i
i

n n

n

j
h h h j

σ

σ

σ σ σ σ σ σ
σ

γ γ γ
φ φ γ

+

+
=

−

∈ ∈ ∈ =

  
   =   

      

∏


                 

                       

= QHFWG 1 2( , , , )nh h h                                                                (1.188) 
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HFMOWA 1 2( , , , )nh h h  
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( )
1

1 ( ) ( )

1 ( )n n

n

i i i
i

n
h h h

i
i
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= HFMWA 1 2( , , , )nh h h                                                               (1.189)  

                       

HFMOWG 1 2( , , , )nh h h  

                       

  

( )
( )

1 ( )( )

1 ( )( )
1

(1) (1) ( 2) (2 ) ( ) ( )

( ) ( )
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T h i
n

T h i
i

n n
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i i
h h h i

σ

σ
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σ σ
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+

+
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∈ ∈ ∈ =

 
  =  
 
  

∏


                    

  = HFMWG 1 2( , , , )nh h h                                                                (1.190) 

                       

Utilizing Choquet integral, we have ( ) ( 1)( ) ( )i i im X m Xσ σω −= −  , where σ : 

{1,2, , }n → {1, 2, , }n  is a permutation such that (1) (2) ( )nh h hσ σ σ≥ ≥ ≥ , 

( )iXσ = { }(1) (2) ( ), , , ix x xσ σ σ , when 1i ≥  and (0)Xσ = ∅ . In such cases, we 

have 
                       

QHFOWA 1 2( , , , )nh h h  

( )( )
(1) (1) (2) (2) ( ) ( )

1
( ) ( 1) ( )

, , , 1

( ) ( ) ( )
n n

n

i i i
h h h i

m X m X
σ σ σ σ σ σ

σ σ σ
γ γ γ

φ φ γ−
−

∈ ∈ ∈ =

  = −  
  



 

  (1.191) 
                       

QHFOWG 1 2( , , , )nh h h      

( ) ( ) ( 1)

(1) (1) ( 2) (2) ( ) ( )

( ) ( )1
( )

, , , 1

( )
i i

n n

n m X m X

j
h h h j

σ σ

σ σ σ σ σ σ
σ

γ γ γ
φ φ γ −−−

∈ ∈ ∈ =

   =   
   

∏
 


    

(1.192) 
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HFMOWA 1 2( , , , )nh h h  

( )( )
(1) (1) (2) (2) ( ) ( )

( ) ( 1) ( ) ( )
, , , 1

( ) ( ) ( )
n n

n

i i i i
h h h i

m X m X
σ σ σ σ σ σ

σ σ σ σ
γ γ γ

φ γ−
∈ ∈ ∈ =

 = − 
 



   

(1.193) 
                       

HFMOWG 1 2( , , , )nh h h  

( ) ( ) ( 1)

(1) (1) (2) (2) ( ) ( )

( ) ( )

( ) ( )
, , , 1

( )
i i

n n

n m X m X

i i
h h h i

σ σ

σ σ σ σ σ σ
σ σ

γ γ γ
φ γ −−

∈ ∈ ∈ =

 =  
 
∏

 


    

(1.194) 
                       

If the reordering step in aggregation operators is not defined by the aggregation 
arguments, but by order-inducing variables, i.e. the ordered positions of the 
arguments depend upon the values of the order-inducing variables, then we can 
get some more general aggregation operators for hesitant fuzzy information.  

                       

Definition 1.39 (Xia et al. 2013a).  Let ,i iu h< > ( 1, 2, ,i n=  ) be a collection 

of 2-tuple aggregation arguments, in which iu  is referred to as the order-inducing 

variable and ih  as the argument variable represented by HFEs. Let IQHFOWA: 
nΘ → Θ , if 

                       

IQHFOWA 1 1 2 2( , , , , , , )n nu h u h u h< > < > < >  

(1) (1) ( 2) (2 ) ( ) ( )

1
( )

, , , 1

( )
n n

n

i i
h h h iσ σ σ σ σ σ

σ
γ γ γ

φ ω φ γ−

∈ ∈ ∈ =

  =   
  



          (1.195)  

                       
then IQHFOWA is called an induced quasi hesitant fuzzy ordered weighted 

aggregation (IQHFOWA) operator, where ( ) ( ),i iu hσ σ< >  is the 2-tuple with 

( )iuσ  the i th largest value in the set 1 2{ , , , }nu u u , ( )φ γ  is a strictly 

continuous monotonic function and 1 2( , , , )nω ω ω ω Τ=   is the associated 

weight vector with 
1

1
n

i
i

ω
=

=  and 0iω ≥ , 1, 2,...,i n= .  

                       

Definition 1.40.  Let ,i iu h< > ( 1, 2, ,i n=  ) be a collection of 2-tuple 

aggregation arguments, in which iu  is referred to as the order-inducing variable 
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and 
ih  as the argument variable represented by HFEs. Let IQHFOWG: 

nΘ → Θ , if 
                       

IQHFOWG 1 1 2 2( , , , , , , )n nu h u h u h< > < > < >  

                       

(1) (1) ( 2) (2 ) ( ) ( )

1
( )

, , , 1

( )i

n n

n

i
h h h iσ σ σ σ σ σ

ω
σ

γ γ γ
φ φ γ−

∈ ∈ ∈ =

  =   
  
∏


          (1.196)  

                       
then IQHFOWG is called an induced quasi hesitant fuzzy ordered weighted 

geometric (IQHFOWG) operator, where ( ) ( ),i iu hσ σ< >  is the 2-tuple with ( )iuσ  

the i th largest value in the set 1 2{ , , , }nu u u , ( )φ γ  is a strictly continuous 

monotonic function and 1 2( , , , )nω ω ω ω Τ=   is the associated weight vector 

with 
1

1
n

i
i

ω
=

=  and 0iω ≥ , 1, 2,...,i n= .  

                       

Definition 1.41 (Xia et al. 2013a).  Let ,i iu h< > ( 1, 2, ,i n=  ) be a collection 

of 2-tuple aggregation arguments, in which iu  is referred to as the order-inducing 

variable and ih  as the argument variable represented by HFEs. Let IHFMOWA: 
nΘ → Θ , if 

                       

IHFMOWA 1 1 2 2( , , , , , , )n nu h u h u h< > < > < >  

                       

(1) (1) ( 2) (2 ) ( ) ( )
( ) ( )

, , , 1

( )
n n

n

i i i
h h h iσ σ σ σ σ σ

σ σ
γ γ γ

ω φ γ
∈ ∈ ∈ =

 =  
 



            (1.197) 

                       
then IHFMOWA is called an induced hesitant fuzzy modular ordered weighted 

averaging (IHFMOWA) operator, where ( ) ( ),i iu hσ σ< >  is the 2-tuple with 

( )iuσ  the i th largest value in the set 1 2{ , , , }nu u u , iφ ( 1, 2, ,i n=  ) are 

strictly continuous monotonic functions, which can be replaced by the functions 

discussed in Eqs.(1.152)-(1.164) and 1 2( , , , )nω ω ω ω Τ=   is the associated 

weight vector with 
1

1
n

i
i

ω
=

=  and 0iω ≥ , 1, 2,...,i n= . 
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Definition 1.42 (Xia et al. 2013a).  Let ,i iu h< > ( 1, 2, ,i n=  ) be a collection 

of 2-tuple aggregation arguments, in which iu  is referred to as the order-inducing 

variable and ih  as the argument variable represented by HFEs. Let IHFMOWG: 
nΘ → Θ , if 

                       

IHFMOWG 1 1 2 2( , , , , , , )n nu h u h u h< > < > < >  

( )
(1) (1) ( 2) (2 ) ( ) ( )

( ) ( )
, , , 1

( )
i

n n

n v

i i
h h h iσ σ σ σ σ σ

σ σ
γ γ γ

φ γ
∈ ∈ ∈ =

 =  
 
∏


            (1.198)  

                       
then IHFMOWG is called an induced hesitant fuzzy modular ordered weighted 

geometric (IHFMWG) operator, where ( ) ( ),i iu hσ σ< >  is the 2-tuple with ( )iuσ  

the i th largest value in the set 1 2{ , , , }nu u u , iφ ( 1, 2, ,i n=  ) are strictly 

continuous monotonic functions, and 1 2( , , , )nω ω ω ω Τ=   is the associated 

weight vector with 
1

1
n

i
i

ω
=

=  and 0iω ≥ , 1, 2,...,i n= . 

Then the weight vector ( 1, 2,..., )i i nω =  can be defined as: 

                        

1i i
i

G G
g g

TV TV
ω −   

= −   
   

 
, ( )

1

i

i j
j

G Vσ
=

= , 
( )

1

n

i
i

TV Vσ
=

= , ( ) ( )1 ( )i iV T hσ σ= +   

(1.199)      
                       

and ( )( )iT hσ  denotes the support of the i th largest HFE ( )ihσ  by all the other 

HFEs, i.e.,  

                     ( )( ) ( ) ( )
1

( ) ,
n

i i j
j
j i

T h Sup h hσ σ σ
=
≠

=                               (1.200) 

                       
where σ : {1,2, , } {1,2, , }n n→   is a permutation such that 

(1) (2)u uσ σ≥ ≥ ( )nuσ≥ , ( ) ( )( , )i jSup h hσ σ  indicates the support of j th 

largest HFE ( )ihσ  for the i th largest HFE ( )jhσ , and : [0,1] [0,1]g →  is a 

BUM function as defined previously. 

The weight vector ( 1, 2,..., )i i nω =  can also be defined as ( )( )i im Xσω = −  

( 1)( )im Xσ − , where σ : {1,2, , } {1,2, , }n n→   is a permutation such that 

(1) (2) ( )nu u uσ σ σ≥ ≥ ≥ , ( )iXσ = (1) (2) ( ){ , , , }ix x xσ σ σ , 1i ≥  and (0)Xσ = ∅ . 
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Consider a multi-attribute group decision making problem under uncertainty. 

Suppose that there are n  alternatives iA ( 1, 2, ,i n=  ) and m  attributes 

jx ( 1, 2, ,j m=  ), and let 
01 2{ , , ..., }pD D D D=  be the set of DMs. 

Suppose that the DM kD  provides all the possible evaluated values under the 

attribute jx  for the alternative iA  denoted by a HFE ( )k
ijh  and constructs the 

decision matrix kH = ( )( )k
ij n m

h
×

. Then, based on the developed aggregation 

operators, we give a method for multi-attribute group decision making with 
hesitant fuzzy information, which involves the following steps: 

                       

Step 1.  Let ( ) ( )( ) ( ) ( ) ( ), 1 ,k l k l
ij ij ij ijSup h h d h h= − , and calculate the support 

( )( )k
ijT h  of the evaluated value ( )k

ijh  by the other evaluated values ( )l
ijh  

( 01, 2,...,l p= , l k≠ ): 

                       

                   ( ) ( )
0

( ) ( ) ( )

1

,
p

k k l
ij ij ij

l
l k

T h Sup h h
=
≠

=                           (1.201)  

                       

and calculate the weights ( )k
ijw 0( 1, 2,..., )k p=  associated with the evaluated 

values ( )k
ijh 0( 1, 2,..., )k p= : 

                                       

                
( )

( )( )0

( )

( )

( )

1

1

1

k
ijk

ij p
k

ij
k

T h
w

T h
=

+
=

+
, 01,2,...,k p=                   (1.202) 

                       

where ( ) 0k
ijw ≥ , 01,2,...,k p= , and 

0
( )

1

1
p

k
ij

k

w
=

= . 

                       
Step 2.  Based on Choquet integral, we calculate the correlations between the 

attributes using the method given previously (many methods have been developed 

upon this issue, i.e., Tan and Chen (2009) used the normalized measure given by 

Sugeno (1974) to determine them (See Section 1.5); Büyüközkan et al. (2009, 

2010) used the 2-additive measure (Grabisch 1997; Büyüközkan et al. 2003) to 

determine them). 
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Step 3.  Aggregate all the individual hesitant fuzzy decision matrix kH =  

( )( )k
ij n m

h
×

( 01,2,...,k p= ) into the collective hesitant fuzzy decision matrix 

( )ij n mH h ×= , where 

( )
0

( ) ( )(1) (1) ( 2) (2 ) 0 0

1 ( ) ( )

, , , 1
p p

ij ij ij ij ij ij

p
k k

ij ij ij
h h h k

h w
γ γ γ

φ φ γ−

∈ ∈ ∈ =

   =   
   



 , 

                       
 1, 2,...,i n= ; 1, 2,...,j m=        (1.203) 

                       

( )( )
( )0

( ) ( )(1) (1) ( 2) (2) 0 0

1 ( )

, , , 1

k
ij

p p
ij ij ij ij ij ij

p w
k

ij ij
h h h k

h
γ γ γ

φ φ γ−

∈ ∈ ∈ =

   =   
   

∏

 , 

                       
 1, 2,...,i n= ; 1, 2,...,j m=        (1.204) 

                                  

( )
0

( ) ( )(1) (1) (2 ) ( 2) 0 0

( ) ( )

, , , 1
p p

ij ij ij ij ij ij

p
k k

ij ij k ij
h h h k

h w
γ γ γ

φ γ
∈ ∈ ∈ =

 
=  

 



 ,  

                       
1, 2,...,i n= ; 1, 2,...,j m=        (1.205) 

or         

           ( )( )
( )0

( ) ( )(1) (1) ( 2) (2) 0 0

( )

, , , 1

k
ij

p p
ij ij ij ij ij ij

p w
k

ij k ij
h h h k

h
γ γ γ

φ γ
∈ ∈ ∈ =

 
=  

 
∏


 ,  

                       
1, 2,...,i n= ; 1, 2,...,j m=        (1.206) 

 

Step 4.  Get the expected results ih  for the alternatives iA ( 1, 2,..., )i n= : 

                       

( )
1 1 2 2

1
1

, , , 1

( ) ( ) ( )
i i i i im im

m

i j j ij
h h h j

h m X m X
γ γ γ

φ φ γ−
−

∈ ∈ ∈ =

   = −  
   




  , 1, 2,...,i n=  (1.207) 

                       

( ) 1

1 1 2 2

( ) ( )1

, , , 1

( )
j j

i i i i im im

m m X m X

i ij
h h h j

h
γ γ γ

φ φ γ −−−

∈ ∈ ∈ =

   =   
   

∏
 


 , 1, 2,...,i n=     (1.208) 
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( )
1 1 2 2

1
, , , 1

( ) ( ) ( )
i i i i im im

m

i j j j ij
h h h j

h m X m X
γ γ γ

φ γ−
∈ ∈ ∈ =

 
= − 

 



  , 1, 2,...,i n=  

(1.209)  
                       

or 
                       

( )
0

1

1 1 2 2

( ) ( )

, , , 1

( )
j j

i i i i im im

p
m X m X

i j ij
h h h k

h
γ γ γ

φ γ −−

∈ ∈ ∈ =

 
=  

 
∏

 


 , 1, 2,...,i n=     (1.210) 

                       

and get the overall preference value ih  corresponding to the alternative iA . 

                       

Step 5.  Calculate the scores of ih , and rank the alternatives according to ( )is h  

( 1, 2,...,i n= ). 

                       
To illustrate the proposed method, an example (adapted from Chen (2011)) is 

given as follows: 
                       

Example 1.22 (Xia et al. 2013a). The following practical example involves a 
supplier selection problem in a supply chain. The authorized DMs in a small 
enterprise attempt to reduce the supply chain risk and uncertainty to improve 
customer service, inventory levels, and cycle times, which results in increased 
competitiveness and profitability. The DMs consider various criteria involving: (1) 

1x : Performance (e.g., delivery, quality, price); (2) 2x : Technology (e.g., 

manufacturing capability, design capability, ability to cope with technology 

changes); (3) 3x : Organizational culture and strategy (e.g., feeling of trust, 

internal and external integration of suppliers, compatibility across levels and 

functions of three suppliers: ( 1, 2,3)iA i = . There are three DMs 

( 1, 2,3)iD i = , are authorized to evaluate these five suppliers. Suppose the DMs 

( 1, 2,3)iD i =  provide all the possible evaluated values under the attributes 

jx ( 1, 2,3j = ) for the alternatives iA ( 1, 2,3i = ) denoted by the HFEs ( )k
ijh  

( 1, 2,3i = ; 1, 2,3j = ; 1, 2,3k = ) and construct the decision matrices kH =  

( )( )

5 3

k
ijh

×
( 1, 2,3k = ) (see Tables 1.8-1.10 (Xia et al. 2013a)). 
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Table 1.8. The hesitant fuzzy decision matrix 1H  

 1x  2x  3x  

1A  {0.6} {0.7} {0.4,0.5} 

2A  {0.6,0.8} {0.5,0.9} {0.7} 

3A  {0.4,0.5} {0.3} {0.6} 

  

Table 1.9. The hesitant fuzzy decision matrix 2H  

 
1x  2x  3x  

1A  {0.2,0.4} {0.3,0.5} {0.4} 

2A  {0.8} {0.7} {0.6,0.7} 

3A  {0.4} {0.3,0.6} {0.5,0.7} 

  

Table 1.10. The hesitant fuzzy decision matrix 3H  

 
1x  2x  3x  

1A  {0.5} {0.3,0.4} {0.6} 

2A  {0.7,0.9} {0.8} {0.5,0.6} 

3A  {0.3,0.4} {0.4,0.5} {0.8} 

  
To get the optimal supplier, the following steps are given: 
                       

Step 1.  Calculate the weights ( )k
ijw ( 1, 2,3)k =  associated with the evaluated 

values ( ) ( 1, 2,3)k
ijh k = : 

                       

( )(1) (1)

3 3

0.3333 0.3160 0.3393

0.3333 0.3273 0.3333

0.3319 0.3304 0.3364
ijV w

×

 
 = =  
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( )(2) (2)

3 3

0.3241 0.3443 0.3348

0.3333 0.3364 0.3377

0.3362 0.3348 0.3364
ijV w

×

 
 = =  
 
 

 

                       

( )(3) (3)

3 3

0.3426 0.3396 0.3259

0.3333 0.3364 0.3289

0.3319 0.3348 0.3273
ijV w

×

 
 = =  
 
 

 

                       
Step 2.  Assume that the weights of the attributes have correlations with each 
other and  

                       

( ) 0m φ = , 1({ }) 0.3m x = , 2({ }) 0.5m x = , 3({ }) 0.4m x =  

                       
then we have  

                       

( )1 2{ , } 0.7323m x x = , ( )1 3{ , } 0.6458m x x =  

                       

( )2 3{ , } 0.8097m x x = , ( )1 2 3{ , , } 1m x x x =  

                       
Step 3.  Utilize Eq.(1.203) (let ( )φ γ γ= ) to aggregate all the individual hesitant 

fuzzy decision matrices kH = ( )( )

3 3

k
ijh

×
( 1, 2,3k = ) into the collective hesitant 

fuzzy decision matrix 3 3( )ijH h ×=
 
(see Table 1.11 (Xia et al. 2013a)). 

                       
Table 1.11. The collective hesitant fuzzy decision matrix 

 
1x  2x  3x  

1A  {0.4361,0.5009} {0.4264,0.4604,0.4953, 

0.5292} 

{0.4652,0.4991} 

2A  {0.7000,0.7667, 

0.8333} 

{0.6682,0.7991} {0.6004,0.6333,0.6342, 

0.6671} 

3A  {0.3668,0.4000, 

0.4332} 

{0.3335,0.3670,0.4339, 

0.4674} 

{0.6318,0.6991} 
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Step 4.  Utilize Eq.(1.207) (let ( )g γ γ= ) to get the expected results 

ih ( 1, 2,3)i =  for the alternatives iA ( 1, 2,3)i = : 
                       

{1= 0.4397,0.4488,0.4544,0.4591,0.4635,0.4682,0.4695,0.4738,h  

       }0.4786,0.4829,0.4841,0.4889,0.4932,0.4980,0.5036,0.5127  
                       

{2 0.6596,0.6684,0.6686,0.6774,0.6796,0.6884,0.6886,0.6975,0.6996,h =       

            0.7084,0.7086,0.7162,0.7174,0.7250,0.7252,0.7340,0.7362,0.7450,  

}0.7452,0.7540,0.7562,0.7650,0.7652,0.7740  
                       

{3 0.4233,0.4333,0.4378,0.4414,0.4433,0.4478,0.4513,0.4558,0.4577,h =  

      0.4613,0.4658,0.4667,0.4758,0.4767,0.4812,0.4848,0.4867,0.4912,  

}0.4947,0.4992,0.5011,0.5047,0.5092,0.5192  
                       

Step 5.  Calculate the scores of ih ( 1, 2,3)i = , and rank the alternatives 

according to ( )is h ( 1, 2,3)i = : 
                       

1 0.4762h = , 2 0.7168h = , 3 0.4713h =  
                       

and thus 2 1 3A A A  . 

In Step 3, if we utilize Eq.(1.204) (let ( )iφ γ γ= , 1, 2,3i = ) to aggregate all 

the individual hesitant fuzzy decision matrices kH = ( )( )

3 3

k
ijh

×
( 1, 2,3k = ) into 

the collective hesitant fuzzy decision matrix 3 3( )ijH h ×=
 

(see Table 1.12  

(Xia et al. 2013a)). 
                       

Table 1.12. The collective hesitant fuzzy decision matrix 

 
1x  2x  3x  

1A  {0.3948,0.4943} {0.3921,0.4324,0.4675

, 0.5155} 

{0.4565,0.4924} 

2A  {0.6952,0.7560,0.7652

, 0.8320} 

{0.6558,0.7949} {0.5949,0.6267, 

0.6316,0.6654} 

3A  {0.3636,0.3915,0.4000

, 0.4307} 

{0.3303,0.3560,0.4166

, 0.4489} 

{0.6200,0.6943} 
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We first utilize Eq.(1.207) (let ( )iφ γ γ= , 1, 2,3i = ) to get the expected 

results ih ( 1, 2,3)i =  for the alternatives iA ( 1, 2,3)i = : 

                       

{1= 0.4092,0.4176,0.4269,0.4357,0.4378,0.4416,0.4467,0.4506,h  

}0.4567,0.4606,0.4660,0.4700,0.4724,0.4820,0.4927,0.5028  

                       

{2 0.6502,0.6593,0.6607,0.6668,0.6692,0.6700,0.6761,0.6775,h =  

0.6786,0.6800,0.6862,0.6870,0.6895,0.6958,0.6973,0.7066,  

0.7071,0.7165,0.7180,0.7246,0.7272, 0.7281,0.7347,0.7363,  

}0.7374,0.7390,0.7457,0.7466,0.7493,0.7562,0.7577,0.7684  

                       

{3 0.4024,0.4114,0.4141,0.4148,0.4156,0.4234,0.4241,0.4249,h =  

0.4268,0.4277,0.4284,0.4364,0.4373,0.4380,0.4409,0.4449,  

0.4507,0.4548,0.4578,0.4585,0.4594,0.4680,0.4688,0.4698,  

}0.4719,0.4728,0.4736, 0.4824,0.4834,0.4842,0.4873,0.4983  

                       

Then we calculate the scores of ih ( 1, 2,3)i = , and rank the alternatives 

according to ( )is h ( 1, 2,3)i = : 

                       

1 0.4543h = , 2 0.7076h = , 3 0.4485h =  

                       

and thus, 2 1 3A A A  . 

In the decision making process, we can choose different aggregation operators 
according to the practical problems. At the same time, different results may be 
produced, which reflects the preferences of the DMs. 

Motivated by Definitions 1.35 and 1.36, if we replace the arithmetical average 
and the arithmetical geometric average in Definitions 1.22 and 1.23 with the quasi 
arithmetical average, respectively, then the QHFHAA and QHFHAG operators 
will be obtained, which are in mathematical forms as below: 

                       
Definition 1.43 (Liao and Xu 2013c).  For a collection of HFEs 

jh ( 1, 2, ,j n=  ), 1 2( , , , )nw w w w Τ=   is the weight vector of them with 

[0,1]jw ∈ , 1, 2,...,j n= , and 
1

1
n

j
j

w
=

= , then we define the following  
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aggregation operators, which are all based on the mapping nΘ → Θ  with an 

aggregation-associated vector ω = ( )1 2, , , nω ω ω Τ  such that [0,1]jω ∈ , 

1, 2,...,j n= , 
1

1
n

j
j

ω
=

= , and a continuous strictly monotonic function ( )g γ : 

                       
(1) The quasi hesitant fuzzy hybrid arithmetical averaging (QHFHAA) operator: 

                       

QHFHAA ( )
( )( )

11
1 2

( )
1

, , ,

n

j j j
j

n n

j j
j

w g h
h h h g

w

σ

σ

ω

ω

=−

=

 
 ⊕
 =
 
 
 


  

                       
( )

( )
1

1 1 2 2

1

, , ,

1

1 (1 ( ))

j j
n

j j
j

n n

n

h h h j
j

g
g

σ

σ

λ ω

λ ω

γ γ γ γ =

−

∈ ∈ ∈

=

  
  =   − −    

∏
       (1.211)          

                       
(2) The quasi hesitant fuzzy hybrid arithmetical geometric (QHFHAG) operator: 

                       

QHFHAG ( ) ( )
( )

( )
1

1
1 2

1
, , , ( )

j j
n

j j
j

wn

wn j
j

h h h g g h
σ

σ

ω

ω
=

−

=

 
= ⊗  

 
  

                       
( )

( )
1

1 1 2 2

1

, , ,

1

( ( ))

j j
n

j j
j

n n

n

h h h j
j

g
g

σ

σ

λ ω

λ ω

γ γ γ γ =

−

∈ ∈ ∈

=

  
  =   

    
∏

              (1.212) 

where { } { }: 1, 2, , 1, 2, ,n nσ →   is the permutation such that jh  is the 

( )jσ th largest element of the collection of HFEs jh ( 1, 2, ,j n=  ), and 

1 2( , , , )nw w w w Τ=   is the weighting vector of the HFEs jh ( 1, 2, ,j n=  ), 

with [0,1]jw ∈ , 1, 2,...,j n= , and 
1

1
n

j
j

w
=

= . 

Note that when assigning different weighting vector of ω  or w  or choosing 

different types of function ( )g γ , the QHFHAA and QHFHAG operators will 

reduce to many special cases, which can be set out as follows: 
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(1) If the associated weighting vector 
1 1 1

, , ,
n n n

ω
Τ

 =  
 

 , then the QHFHAA 

operator reduces to the QHFWAA operator shown as: 
                       

QHFHAA ( ) ( )1
1 2

1
, , ,

n

n j j
j

h h h g w g h−

=

 = ⊕ 
 

  

( )
1 1 2 2

1

, , , 1

1 1 ( )
j

n n

n w

j
h h h j

gg
γ γ γ

γ−

∈ ∈ ∈ =

   − −=   
   

∏

    (1.213) 

                       
while the QHFHAG operator reduces to the QHFWG operator shown as: 

                       

QHFHAG ( ) ( )1
1 2

1
, , , ( )

j
n w

n j
j

h h h g g h−

=

 = ⊗ 
 

  

( )
1 1 2 2

1

, , , 1

( )
j

n n

n w

j
h h h j

gg
γ γ γ

γ−

∈ ∈ ∈ =

   =   
   

∏

      (1.214) 

                       

(2) If the arguments’ weight vector 
1 1 1

, , ,w
n n n

Τ
 =  
 

 , then the QHFHAA 

operator reduces to the QHFOWA operator given as Definition 1.35, while the 
QHFHAG operator reduces to the QHFOWG operator given as Definition 
1.36. 

(3) If ( )g γ γ= , then the QHFHAA operator reduces to the HFHAA operator 

given as Definition 1.22, while the QHFHAG operator reduces to the HFHAG 
operator given as Definition 1.23. It is obvious and herein we don’t show 
some proofs. 

(4) If ( ) lng γ γ= , then the QHFHAA operator reduces to the HFHAG operator 

given as Definition 1.23, while the QHFHAG operator reduces to the HFHAA 
operator given as Definition 1.22. The derivation can be shown as below: 

                       

QHFHAA ( )

( )

( )( )
( ) 1

1

( )
1

( )
1

( )
1

ln

ln
1 2, , ,

n

j j j
j

n
n w j j

j
j j n

j
j j j

j

w h

w

w h
nh h h e

e

σ

ωσ
σ

σ

ω

ω
ω

=

=

=
=

⊕

⊕


= =   

                       

( )
( )

( )
1

1

j j
n

j j
jn

j
j

h

λ ωσ

λ ωσ
=

=
= ⊗ =HFHAG ( )1 2, , , nh h h         (1.215) 
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while 

QHFHAG ( ) ( )
( )

( )

( ) ( )
1

1

1

ln( )
ln( )

1 2

( )
1

, , ,

w j j
n

nw wj j j j
jn j

j
j

j

h
h

n n

j j
j

e
h h h e

w

ωσ

ω ωσ σ

σω


=

=
=

⊗
⊗

=

= =


  

                       

             
( )

1

( )
1

n

j j j
j

n

j j
j

w h

w

σ

σ

ω

ω

=

=

⊕
= =


HFHAA ( )1 2, , , nh h h         (1.216) 

                       
Some other special cases can also be constructed by choosing different types of 

the function ( )g γ  for the QHFHAA and QHFHAG operators, such as 

( )g λγ γ= , ( ) 1 (1 )g λγ γ= − − , ( ) sin
2

g
πγ γ =  
 

, ( ) 1 sin (1 )
2

g
πγ γ = − − 
 

 

(1.217) 

( ) cos
2

g
πγ γ =  
 

, ( ) 1 cos (1 )
2

g
πγ γ = − − 
 

, ( ) tan
2

g
πγ γ =  
 

   (1.218) 

         ( ) 1 tan (1 )
2

g
πγ γ = − − 
 

, ( )g γγ λ= , 1( ) 1g b γγ −= −       (1.219) 

                       
where , 0bλ >  and , 1bλ ≠ . 

In the following, we try to investigate the properties of the QHFHAA and 
QHFHAG operators: 

                       

Theorem 1.43 (Idempotency) (Liao and Xu 2013c).  If jh h= ( 1,2, ,j n=  ), 

then  
                       

      QHFHAA ( )1 2, , , nh h h h= ,  QHFHAG ( )1 2, , , nh h h h=        (1.220) 

                       
Proof.  According to Definition 1.43, we can obtain 
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QHFHAA ( )
( ) ( )( ) ( )

1 11 1
1 2

( ) ( )
1 1

, , ,

n n

j j j j j
j j

n n n

j j j j
j j

w g h w g h
h h h g g

w w

σ σ

σ σ

ω ω

ω ω

= =− −

= =

   
   ⊕ ⊕
   = =
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n

j j
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n

j j
j

g h w

g
w

σ

σ

ω

ω

=−

=

 
 
 =
 
 
 




( )( )1g g h h−= =   (1.221) 

                       

QHFHAG ( ) ( ) ( )

( ) ( )

( ) ( )
1 1

1 1
1 2

1 1
, , , ( ) ( )

wj j wj j
n n

wj j wj j
j jn n

n j
j j

h h h g g h g g h

ωσ ωσ

ωσ ωσ 
= =

− −

= =

   
   
 = ⊗ = ⊗ 
        

  

( )

( )
1

( )
1

1 ( )

n
wj j

j
n

w j j
j

g g h

ωσ

ωσ


=


=

−

 
 
 

=  
 
 
 

( )( )1g g h h−= =       (1.222) 

                       
which completes the proof of the theorem. 

Consider a group decision making problem under uncertainty. Suppose that the 

DM kD D∈  provides all the possible evaluated values under the attribute 

jx X∈  for the alternative iA  denoted by a HFE ( )k
ijh  and constructs the 

decision matrix kH = ( )( )k
ij n m

h
×

. He/She also determines the importance 

degrees ( ) ( 1, 2,..., )k
jw j m=  for the relevant attributes according to his/her 

preferences. Meanwhile, since different alternatives may have different focuses 
and advantages, to reflect this issue, the DM also gives the ordering weights 

( ) ( 1, 2, ..., )k
j j nω =  for different attributes. Suppose that the weight vector of the 

DMs is 
0

T
1 2( , ,..., )pυ υ υ υ= , [0,1]kυ ∈ , 01,2,...,k p= , and 

0

1

1
p

k
k

υ
=

= . Then, 

based on the given aggregation operators, we introduce a method for group 
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decision making with hesitant fuzzy information, which involves the following 
steps (Liao and Xu 2013c): 

                       
Step 1. Utilize the HFWA operator (1.32) (or the HFWG operator (1.34)) to 

aggregate all the individual hesitant fuzzy decision matrix kH = ( )( )k
ij n m

h
×

 

( 01,2,...,k p= ) into the collective hesitant fuzzy decision matrix ( )ij n mH h ×= , 

where 
                       

( )
0

( ) ( )
0

( )

, 1,2, , 1

1 1
k

k k
ij ij

p
k

ij ij
h k p k

h
λ

γ
γ

∈ = =

 
= − − 

 
∏


 , 1, 2, ...,i n= ; 1, 2,...,j m=    (1.223) 

                       
or  

                       

( )
0

( ) ( )
0

( )

, 1,2, , 1

k

k k
ij ij

p
k

ij ij
h k p k

h
λ

γ
γ

∈ = =

 
=  

 
∏


 , 1, 2, ...,i n= ; 1, 2,...,j m=    (1.224) 

                       

Step 2.  Utilize the QHFHAA (or QHFHAG) operator to obtain the HFEs ih  

(i = 1,2, , )n  for the alternatives iA ( 1, 2, , )i n=  , where 

                       

ih = QHFHAA ( )1 2, , ,i i imh h h  

                       
( )

( )1
1

, 1,2, ,
1

1 (1 ( ))

j j
m

j jj

ij ij

w

m w

j
h j m

j

g g

ε

ε

ω

ω

γ
γ =

−

∈ = =

    =  − −    
∏


 , 1, 2, ,i n=          (1.225) 

                       
or 

                       

ih = QHFHAG ( )1 2, , ,i i imh h h  

( )
( )

( )
11

, 1,2, ,

1

( )

w j j
m

j j
j

ij ij

m

h j m j
j

g
g

ωσ

λ ωσ

γ γ

=−

∈ =
=

  
  =       

∏
 , 1, 2, ,i n=          (1.226) 

                       

Step 3.  Compute the score values ( )is h ( 1, 2, , )i n=   of ih ( 1, 2, , )i n=   

by Definition 1.2 and the deviation degrees ( )hs¢ ( 1, 2, , )i n=   of 

ih ( 1, 2,i =  , )n  by Definition 1.5. 
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Step 4.  Get the priority of the alternatives iA ( 1, 2, , )i n=   by ranking ( )is h  

and ( )hs¢ ( 1, 2, , )i n=  . 

                       
We now consider a multi-attribute group decision making problem that 

concerns evaluating and ranking work systems safety (adapted from Dağdeviren 
and Yüksel (2008)) to illustrate our method: 

                       
Example 1.23 (Liao and Xu 2013c). Maintaining the safety of work systems in 
workplace is one of the most important components of safety management within 
an effective manufacturing organization. There are many factors which affect the 
safety system simultaneously. According to the statistical analysis of the past work 
accidents in a manufacturing company in Ankara, Turkey, Dağdeviren & Yüksel 
(2008) found there are four sorts of factors which affect the safety system: 

                       
(1) 1x : Organizational factors, which involve job rotation, working time, job 

completion pressure, and insufficient control. 
                       
(2) 2x : Personal factors, which consist of insufficient preparation, insufficient 

responsibility, tendency of risky behavior, and lack of adaptation.  
                       
(3) 3x : Job related factors, which can be divided into job related fatigue, reduced 

operation times due to dangerous behaviors, and variety and dimension of job 
related information. 

                       
In addition, it is not possible to assume that the effects of all factors of work 

safety are the same in all cases. Hence, by using the fuzzy analytic hierarchy 
process (FAHP) method, Dağdeviren and Yüksel (2008) constructed a hierarchical 
structure to depict the factors and sub-factors, and then determined the weight 

vector of these three factors, which is T(0.388,0.3,0.312)w = . Three DMs 

( 1, 2, 3)kD k =  from different departments, whose weight vector is 
T(0.4,0.3,0.3)υ = , are gathered together to evaluate three candidate work 

systems ( 1, 2, 3)iA i =  according to the above predetermined factors 

( 1, 2, 3, 4)jx j = . However, since these factors effecting work system safety 

have non-physical structures, it is hard for the DMs to represent their preference 
by using crisp numbers. HFEs are appropriate for them to use in expressing these 
preferences realistically since they may have a set of possible values when 
evaluating these behavioral and qualitative factors. Thus, the hesitant fuzzy 

judgment matrices kH = ( )( )

3 4

k
ijh

×
( 1,2,3k = ) are constructed by the DMs, 

shown as Tables 1.13-1.15 (Liao and Xu 2013c). Furthermore, considering  
the fact that different DMs are familiar with different research fields,  
and meanwhile, different work systems may focus on different partitions,  
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the DMs may want to give more weights to the attribute which is more prominent. 
Hence, another weight vectors are determined by the DMs according to their 

preferences, which are (1) T(0.4,0.3,0.3)ω = , (2) (0.5,0.3,ω =  T0.2)  and 
(3) T(0.4, 0.4, 0.2)ω = .  

                       

Table 1.13. The hesitant fuzzy decision matrix 1H  

 1x  2x  3x  

1A  {0.6} {0.7} {0.4,0.5} 

2A  {0.6,0.8} {0.5,0.9} {0.7} 

3A  {0.4,0.5} {0.3} {0.6} 

                       

Table 1.14. The hesitant fuzzy decision matrix 2H  

 1x  2x  3x  

1A  {0.2,0.4} {0.3,0.5} {0.4} 

2A  {0.8} {0.7} {0.6,0.7} 

3A  {0.4} {0.3,0.6} {0.5,0.7} 

  

Table 1.15. The hesitant fuzzy decision matrix 3H  

 1x  2x  3x  

1A  {0.5} {0.3,0.4} {0.6} 

2A  {0.7,0.9} {0.8} {0.5,0.6} 

3A  {0.3,0.4} {0.4,0.5} {0.8} 
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To get the optimal work system, the following steps are given: 
 

Step 1.  Utilize the aggregation operator to fuse all the individual hesitant fuzzy 

decision matrices kH = ( )( )

3 4

k
ijh

×
( 1,2,3k = ) into the collective hesitant fuzzy 

decision matrix 3 4( )ijH h ×= . Here we use the HFWA operator (1.223) to fuse 

the individual hesitant fuzzy decision matrix. Here, we take 23h  as an example:  

                       

( )
( ) ( )
23 23

3
( )

23 23
, 1,2,3 1

1 1
k

k k

k

h k k

h
λ

γ
γ

∈ = =

 = − − 
 

∏

{ 0.4 0.3 0.31 (1 0.7) (1 0.6) (1 0.5) ,= − − − − 0.4 0.3 0.31 (1 0.7) (1 0.6) (1 0.6) ,− − − −  

}0.4 0.3 0.3 0.4 0.3 0.31 (1 0.7) (1 0.7) (1 0.5) ,1 (1 0.7) (1 0.7) (1 0.6)− − − − − − − −  

{0.619,0.644,0.65,0.673}=  

                       
Similarly, other fused values can be obtained, and then the collective hesitant 

fuzzy matrix can be derived as below: 
                       

{0.473,0.517} {0.501,0.524,0.549,0.57} {0.469,0.506}

{0.702,0.774,0.786,0.838} {0.674,0.829} {0.619,0.644,0.65,0.673}

{0.372,0.4,0.442,0.416} {0.332,0.367,0.435,0.465} {0.653,0.702}

H

 
 =  
 
 

 

                       
Step 2.  Utilize the aggregation operator (such as the QHFHAA operator (1.225) 

or the QHFHAG operator (1.226)) to obtain the HFEs ih ( 1, 2,3)i =  for the 

alternatives iA ( 1, 2,3)i = . Here we use the QHFHAA operator to fuse the 

collective HFEs and let ( )g γ γ= , then we can get 

                       

1 {0.4825,0.4913,0.493,0.4983,0.5012,0.5017,0.5068,0.5084,0.5098,h =  

0.5113,0.5164,0.5168,0.5197,0.5247,0.5262,0.5343} 

                       

2h = {0.6811,0.685,0.686,0.6898,0.7269,0.7302,0.7303,0.731,0.7336,0.7343,  

0.7344,0.7351, 0.7383,0.7391, 0.7377, 0.7423,0.769,0.7718, 0.7725,  

0.7733,0.7753,0.776,0.7761,0.7768,0.7787,0.7794,0.7795,0.7821,  

0.8083,0.8106,0.8112,0.8135}  
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3h = {0.4894,0.4942,0.4999,0.5043,0.5046,0.506,0.509,0.5107,0.5145,   

0.5162,0.5171,0.5191,0.5204,0.5208,0.5217,0.525,0.5271,0.5303,  

0.5312,0.5316,0.5329,0.5348,0.5357,0.5373,0.5409,0.5425,0.5453,  

0.5465,0.5468,0.5508,0.5558,0.5601}  

                       

The computational process of 2h  can be illustrated as an example:  

Since  
                       

( )21

(0.702 0.774 0.786 0.838)
0.775

4
s h

+ + += =   

                       

( )22

(0.674+0.829)
0.7515

2
s h = =  

                       

( )23s h =  
(0.619+0.644+0.65+0.673)

4
0.6465=  

                       

then 21 22 23h h h> > . Thus, (21) 1,σ =  (22) 2,σ =  (23) 3σ = , and  

                       

1 (21)

3

(2 )
1

0.388 0.5
0.56

0.388 0.5 0.3 0.3 0.312 0.2
j j

j

w

w

σ

σ

ω

ω
=

×= =
× + × + ×

 

                       

2 (22)

3

(2 )
1

0.2598

j j
j

w

w

σ

σ

ω

ω
=

=


, 
3 (23)

3

(2 )1

0.1801
j jj

w

w

σ

σ

ω
ω

=

=


 

                       
Therefore, by using Eq.(1.225), we can calculate that 

                       

2h = QHFHAA ( )21 22 23, ,h h h  

                       

{ }
21 21 22 22 23 23

0.56 0.2598 0.1801
21 22 23

, ,
1 (1 ) (1 ) (1 )

h h hγ γ γ
γ γ γ

∈ ∈ ∈
= − − − −  

                       
{0.6811,0.685,0.686,0.6898,0.7269,0.7302,0.7303,0.731,0.7336,0.7343,=      

0.7344,0.7351,0.7383,0.7391,0.7377,0.7423,0.769,0.7718,0.7725,  
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0.7733,0.7753,0.776,0.7761,0.7768,0.7787,0.7794,0.7795,0.7821,  

0.8083,0.8106,0.8112,0.8135}  

                       

Step 3. Compute the score values ( )is h ( 1, 2, , )i n=   of ih ( 1, 2, , )i n=   

by Definition 1.2, and then we have 1( ) 0.5089s h = , 2( ) 0.7534s h = , and 

3( ) 0.5257s h = . 

Step 4.  Since 2 3 1( ) ( ) ( )s h s h s h> > , then we get 2 3 1h h h  , which means 

2A  is the most desirable work system. 

1.6    Generalized Hesitant Fuzzy Aggregation  

It is noted that the known hesitant fuzzy aggregation operators are all developed 
based on the Algebraic t-norm and t-conorm which is a special case of t-norms 
and t-conorms. In this section, we mainly introduce some aggregation operators 
for hesitant fuzzy information, discuss their properties and special cases, and give 
their applications to MADM. 

                       

Definition 1.44 (Xia and Xu 2011b).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and 1 2( , )nw w w w Τ=   their weight vector [0,1]iw ∈ , 1, 2, ,i n=  , 

and 
1

1
n

i
i

w
=

= . If  

                       

ATS-HFWA 1 2( , , , )nh h h =
1

n

i i
i

w h
=
⊕ =

1 1 2 2

1

, , , 1

( )
n n

n

i i
h h h i

s w s
γ γ γ

γ−

∈ ∈ ∈ =

  
  

  



     

(1.227) 
                       

and 
                       

ATS-HFWG 1 2
1

( , , , ) i

n
w

n i
i

h h h h
=

= ⊗ =
1 1 2 2

1

, , , 1

( )
n n

n

i i
h h h i

w
γ γ γ

τ τ γ−

∈ ∈ ∈ =

  
  

  



     

(1.228) 
                       

then ATS-HFWA and ATS-HFWG are called the Archimedean t-norm and t-
conorm based hesitant fuzzy weighted averaging (ATS-HFWA) operator and the 
Archimedean t-norm and t-conorm based hesitant fuzzy weighted geometric 
(ATS-HFWG) operator, respectively. 
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Now we show that Eq.(1.227) holds, by using mathematical induction on n : 
For 2n = , we have 

                       

ATS-HFWA
2

1 2 1 1 2 2
1

( , ) i i
i

h h w h w h w h
=

= ⊕ = ⊕  

                       

( )( ) ( )( )( ){ }
1 1 2 2

1 1 1
1 1 2 2

,
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s s s w s s s w s

γ γ
γ γ− − −

∈ ∈
= +        

                       
                       

( ){ }
1 1 2 2

1
1 1 2 2

,
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h h
s w s w s

γ γ
γ γ−

∈ ∈
= +                        (1.229) 

                       
Suppose it holds for n k= , that is, 
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           (1.230)             

                       
then 
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                                (1.231)                    
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Similarly, we can prove that Eq.(1.227) holds, which completes the proof. 
                       

Definition 1.45 (Xia and Xu 2011b).  Let ih ( 1, 2, ,i n=  ) be a collection of 

HFEs and 1 2( , , , )nw w w w Τ=   the weight vector of them with [0,1]iw ∈ , 

1,2, ,i n=  , 
1

1
n

i
i

w
=

=  and 0λ > . If  

                       

ATS-GHFWA

1

1 2
1

( , , , )
n

n i i
i

h h h w h
λλ

=

 = ⊕ 
 

   

                       

( )( )
1 1 2 2

1 1 1

, , , 1

1
( )

n n

n

i i
h h h i

s w s
γ γ γ

τ τ τ λτ γ
λ

− − −

∈ ∈ ∈ =

     =           



        (1.232)               

                       
and 

                       

ATS-GHFWG 1 2
1

1
( , , , ) i

n
w

n i
i

h h h hλ
λ =

 = ⊕ 
 

  

                       

( )( )
1 1 2 2

1 1 1

, , , 1

1
( )

n n

n

i i
h h h i

s s w s s
γ γ γ

τ τ λ γ
λ

− − −

∈ ∈ ∈ =

     =           



        (1.233) 

                       
then ATS-GHFWA and ATS-GHFWG are called the Archimedean t-norm and t-
conorm based generalized hesitant fuzzy weighted averaging (ATS-GHFWG) 
operator and the Archimedean t-norm and t-conorm based generalized hesitant 
fuzzy weighted geometric (ATS-GHFWG) operator, respectively. Especially, if 

1λ = , then the ATS-GHFWA and ATS-GHFWG operators reduce to the ATS-
HFWA and ATS-HFWG operator, respectively. 

We can show Eq.(1.232) holds, in fact, based on the operations for HFEs 

defined in Definition 1.13, we have ( ){ }1 ( )
i i

i i
h

hλ

γ
τ λτ γ−

∈
=   , then  

                       

       ( )( )
1 1 2 2

1 1

1 1, , ,
( )

n n

n n

i i i i
i ih h h

w h s w sλ

γ γ γ
τ λτ γ− −

= =∈ ∈ ∈

  ⊕ = ⊕  
  

            (1.234) 

                       
and 
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ATS-GHFWA ( )( )
1 1 2 2

1 1 1
1 2

, , , 1

1
( , , , ) ( )

n n

n

n i i
h h h i

h h h s w s
γ γ γ

τ τ τ λτ γ
λ

− − −

∈ ∈ ∈ =

     =           



           

(1.235) 
                       

Similarly, we can prove that Eq.(1.232) also holds, which completes the proof. 
Some properties of the ATS-GIFWA and ATS-GIFWG operators can be 

discussed as follows: 
                       

Theorem 1.44 (Xia and Xu 2011b).  If all ( 1, 2,..., )ih i n=  are equal, i.e., 

ih h= , for all i , then 

                       

ATS-GHFWA 1 2( , ,..., )nh h h h=                        (1.236) 

                       
and 

                        

                     ATS-GHFWG 1 2( , ,..., )nh h h h=                       (1.237) 

                       

Proof.  Let ih h= , we have 

                       

ATS-GHFWA 1 2( , ,..., )nh h h = ATS-GHFWA ( , ,..., )h h h  

                       

( )( )1 1 1

1
1

1
( )

nn

i i
i h i

w h s w s h
γ

τ τ τ λτ γ
λ

− − −

= ∈ =

     = ⊕ = =          
        (1.238) 

                       
Similarly, we can prove another part of the theorem, which completes the 

proof. 
                       

Theorem 1.45 (Xia and Xu 2011b).  Let ih  and * ( 1,2,..., )ih i n=  be two 

collections of HFEs, if *
i iγ γ≤  for all i i

hg Î  and 
* *
i i

hg Î , then 

                       

         ATS-GHFWA 1 2( , ,..., )nh h h ≤ ATS-GHFWA * * *
1 2( , ,..., )nh h h      (1.239) 

                       
and  

                       

         ATS-GHFWA 1 2( , ,..., )nh h h ≤ ATS-GHFWA * * *
1 2( , ,..., )nh h h      (1.240) 
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Proof.  We have known that ( ) (1 )s t tτ= −  , and τ : [0,1] [0, ]→ +∞  is a 

strictly decreasing function, then ( )s t  is a strictly increasing function. Since 

*
i iγ γ≤  for all i i

hg Î  and 
* *
i i

hg Î , then we have 

                       

( )( ) ( )( )1 1 1 1 1 1 *

1 1

1 1
( ) ( )

n n

i i i i
i i

s w s s w sτ τ τ λτ γ τ τ τ λτ γ
λ λ

− − − − − −

= =

         ≤                     
              

(1.241)        
                       

then 
                       

(s ATS-GHFWA 1 2( , ,..., )nh h h ≤ ATS-GHFWA * * *
1 2( , ,..., )nh h h      (1.242) 

                       
Similarly, we can prove another part of the theorem, which completes the  

proof. 
Based on Theorem 1.41, the following property can be obtained: 

                       

Theorem 1.46 (Xia and Xu 2011b).  Let ih ( 1, 2, , )i n=   be a collection of 

HFEs, and max{ }
ii

i
ih

h
γ

γ+

∈
=  , h− = min{ }

i
ii

ihγ
γ

∈
 , then 

                       

                 h− ≤ ATS-GHFWA 1 2( , ,..., )nh h h h+≤                       (1.243)   

                       
and 

                       

                 h− ≤ ATS-GHFWG 1 2( , ,..., )nh h h h+≤                        (1.244) 

                       
If the additive generator τ  is assigned different forms, then some specific 

intuitionistic fuzzy aggregation operators can be obtained as follows: 
                       

Case 1.  If ( ) log( )t tτ = − , then the ATS-GHFWA and ATS-GIFWG operators 

reduce to the following: 
                       

GHFWA ( )
1 1 2 2

1

1 2
, , , 1

( , ,..., ) 1 (1
i

n n

n w

n i
h h h i

h h h
λ

λ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − −  
   

∏

      (1.245) 

                       
and 
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GHFWG ( )
1 1 2 2

1

1 2
, , , 1

( , ,..., ) 1 1 (1 (1 )
i

n n

n w

n i
h h h i

h h h
λ

λ

γ γ γ
γ

∈ ∈ ∈ =

 
  = − − − −  
   

∏

    (1.246) 

                       
which are the generalized hesitant fuzzy weighted averaging (GHFWA) operator 
and the generalized hesitant fuzzy weighted geometric (GHFWG) operator 
proposed by Xia and Xu (2011a).  

                       

Case 2.  If 
2

( ) log
t

t
t

τ − =  
 

 , then the ATS-GHFWA and ATS-GIFWG 

operators reduce to the following: 
                       

GEHFWA
1 1 2 2

1

1 2 1 1
, , ,

2( )
( , ,..., )

( 3 ) ( )
n n

n
h h h

h h h
λ

γ γ γ
λ λ

γ γ

γ γ γ γ

+ −

∈ ∈ ∈ + − + −

 
− =  

 + + − 

    (1.247) 

                       
and 

                       

GEHFWG
1 1 2 2

1 1

1 2 1 1
, , ,

( 3 ) ( )
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( 3 ) ( )
n n

n
h h h

h h h
λ λ

γ γ γ
λ λ

γ γ γ γ

γ γ γ γ
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+ − − =   + + −  


    (1.248) 

                       
where 

                       

( )
1

(1 (1 )) 3
i

n w

i i
i

λ λγ γ γ+

=

= + − +∏ , ( )
1

(1 (1 ))
i

n w

i i
i

λ λγ γ γ−

=

= + − −∏    (1.249) 

                       
which are the generalized Einstein hesitant fuzzy weighted averaging (GEHFWA) 
operator and the generalized Einstein hesitant fuzzy weighted geometric 
(GEHFWG) operator, respectively. 

                       

Case 3.  If 
(1 )

( ) log
t

t
t

ζ ζτ + − =  
 

 , 0ζ > , then the ATS-GHFWA and 

ATS-GIFWG operators reduce to the following: 
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HHFWA 1 2( , , ..., )nh h h  

                       

( )
( )( ) ( )1 1 2 2

1

1 1, , ,
2 1 ( 1)

n nh h h

λ

γ γ γ
λ λ

ζ γ γ

γ ζ γ ζ γ γ
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− 
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   (1.250) 

                       
and 

                       

HHFWG 1 2( , ,..., )nh h h  
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1 1
2

1 1
, , , 2

( ( 1) ) ( )
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    (1.251) 

                       
where 

                       

             ( ) ( )( )2

1

1 ( 1)(1 ) 1
i

n w

i i
i

λ λγ ζ γ ζ γ+

=

= + − − + −∏           (1.252) 

                       

                 ( )
1

(1 ( 1)(1 ))
i

n w

i i
i

λ λγ ζ γ γ−

=

= + − − −∏                     (1.253) 

                       
which are the generalized Hammer hesitant fuzzy weighted averaging 
(GHHFWA) operator and the generalized Hammer hesitant fuzzy weighted 
geometric (GHHFWG) operator, respectively. Especially, if 1ζ = , then the 

GHHFWA operator reduces to the GHFWA operator and the GHHFWG operator 
reduces to the GHFWG operator; If 2γ = , then the GHHFWA operator reduces 

to the GEHFWA operator and the GHHFWG operator reduces to the GEHFWG 
operator. 

                       
Example 1.24 (Xia and Xu 2011b). Let 1 {0.2,0.3}h = , 2 {0.4}h =  and 3h =  

{0.1,0.3,0.4} be three HFEs, whose weight vector is (0.2,0.1,0.7)w Τ= , 

then we can use the ATS-GHIFWA or ATS-GHIFWG operator to aggregate them, 

without loss of generality, let 
(1 )

( ) log
t

t
t

ζ ζτ + − =  
 

 , then we have  

                       

Ah = ATS-GHFWA 1 2 3( , , ) {0.2583,0.2751,0.3098,0.3183,0.3844,0.3877}h h h =   

( ) 0.3223As h =  
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Gh = ATS-GHFWG
1 2 3( , , ) {0.1288,0.1375,0.2781,0.3068 ,0.3247,0.3713}h h h =  

( ) 0.2579Gs h =  
                       

As the values of the parameters ζ  and λ  between 0  and 1, the scores 

obtained by using the ATS-GHFWA and ATS-GHFWG operators are given in 
Figs. 1.8-1.9 (Xia and Xu 2011b), respectively. 

 

 

 
Fig. 1.8. Scores obtained by the ATS-GHFWA operator 

                       

 
Fig. 1.9. Scores obtained by the ATS-GHFWG operator 
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It is noted that the scores obtained by the ATS-GHFWA operator are increasing 
as the value of the parameter λ  increases, while the scores obtained by the ATS-
GHFWG operator are quite the opposite. However, the scores obtained by the 
ATS-GHFWA operator are always bigger than the ones obtained by the ATS-
GHFWG operator. 

Furthermore, we can discuss the relationships of the developed aggregation 
operators: 

                       

Theorem 1.47 (Xia and Xu 2011b).  Let ih ( 1, 2, , )i n=   be a collection of 

HFEs with the weight vector 1 2( , , , )nw w w w Τ=   such that [0,1]iw ∈ , 

1, 2,...,i n= , 
1

1
n

i
i

w
=

=  and 0λ > , then 
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      . 

                             

Suppose that there are n  alternatives iA ( 1, 2, ,i n=  ) and m  attributes 

jx ( 1,2, ,j m=  ) with the weight vector 1 2( , , , )mw w w w Τ=   such that 

[0,1]jw ∈ , 1,2, ,j n=  , and 
1

1
n

j
j

w
=

= . To get more reasonable results, a 

decision organization, which is constructed by a lot of DMs, is authorized to 

evaluate the alternatives under each attribute. For the alternative iA  under the 

attribute jx , some DMs in the decision organization may provide one value, 

others may provide another value, and both of these two parts can not persuade 
each other. To deal with such situation, HFEs are very useful tool, in which we 

consider all the possible values of the alternative iA  under the attribute jx  

provided by the decision organization as a HFE ijh . All the HFEs 

ijh ( 1, 2, ,i n=  ; 1, 2, ,j m=  ) are contained in the hesitant fuzzy decision 

matrix ( )ij n mH h ×= . 
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Based on the above analysis, we give the following decision making method 
(Xia and Xu 2011b): 

                             
Step 1.  Utilize the developed hesitant fuzzy aggregation operators to obtain the 

HFEs ih ( 1, 2, , )i n=   for the alternatives iA ( 1, 2, , )i n=  , i.e., 

                             

ih = ATS-GHFWA 1 2( , , , )i i inh h hλ =
1

1

n

j ij
i

w h
λλ

=

 ⊕ 
 

, 1, 2, ,i n=     (1.254) 

                             
or  

                             

ih = ATS-GHFWG 1 2( , , , )i i inh h hλ = ( )
1

1 j
n w

ij
i

hλ
λ =

⊗ , 1,2, ,i m=     (1.255) 

                             

Step 2. Compute the score values ( )is h ( 1, 2, , )i n=   of ih ( 1, 2, , )i n=   

and get the priority of the alternatives iA ( 1, 2, ,i n=  ) by ranking ( )is h  

( 1, 2, , )i n=  . 

                             
Example 1.25 (Parreiras et al. 2010; Xia and Xu 2011b).  An enterprise is to plan 
the development of large projects (strategy initiatives) for the following five years. 

Suppose there are four possible projects ( 1, 2,3,4)iA i =  to be evaluated. It is 

necessary to compare these projects to select the most important of them as well as 
order them from the point of view of their importance, taking into account four 
attributes suggested by the balanced scorecard methodology (Kaplan and Norton 

1996) (it should be noted that all of them are of the benefit type): (1) 1x : Financial 

perspective; (2) 2x : The customer satisfaction; (3) 3x : Internal business process 

perspective; (4) 4x : Learning and growth perspective. Suppose that the weight 

vector of the attributes is (0.2,0.3,0.15,0.35)w Τ= . In order to get more 

reasonable results, a decision organization is required to provide all the possible 

values that the alternative iA  satisfies the attribute jx  represented by a HFE ijh . 

All the HFEs ijh ( , 1,2,3,4i j = ) are contained in the hesitant fuzzy decision 

matrix 4 4( )ijH h ×=  (see Table 1.16 (Xia and Xu 2011b)). 
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Table 1.16. The hesitant fuzzy decision matrix 
4 4( )ijH h ×=  

 
1x  2x  3x  4x  

1A  {0.2,0.4,0.7} {0.2,0.6,0.8} {0.2,0.3,0.6,0.7,0.9} {0.3,0.4,0.5,0.7,0.8} 

2A  {0.2,0.4,0.7,0.9} {0.1,0.2,0.4,0.5} {0.3,0.4,0.6,0.9} {0.5,0.6,0.8,0.9} 

3A  {0.3,0.5,0.6,0.7} {0.2,0.4,0.5,0.6} {0.3,0.5,0.7,0.8} {0.2,0.5,0.6,0.7} 

4A  {0.3,0.5,0.6} {0.2,0.4} {0.5,0.6,0.7} {0.8,0.9} 

  
To get the ranking of the alternatives, the proposed method is used as follows: 

                             
Step 1.  Utilize the GHFWA operator to obtain the HFEs ih ( 1, 2,3,4)i =  for 

the projects iA ( 1, 2,3,4)i = . Take the project 4A  for an example, and let 

(1 )
( ) log

t
t

t

ζ ζτ + − =  
 

 , 1λ =  and 2ζ = , then we have  

                             

4h = ATS-HFWA ( ){0.3,0.5,0.6},{0.2,0.4},{0.5,0.6,0.7},{0.8,0.9}  
                             
{0.5296,0.5450,0.5631,0.5633,0.5756,0.5778,0.5826,0.5899,0.5949,=  

                             
0.5967,0.6067,0.6068,0.6132,0.6172,0.6203,0.6247,0.6303,0.6361,  

                             
0.6377,0.6458,0.6460,0.6529,0.6565,0.6584,0.6624,0.6686,0.6729,  

                             
0.6744,0.6828,0.6830,0.6884,0.6943,0.6980,0.7076,0.7089,0.7217} 

                             
As the values of the parameters λ  and ζ  change, we can get different results 

for alternatives (see Table 1.17). 
                             

Step 2.  Compute the scores ( )is h ( 1, 2,3,4)i =  of ih ( 1, 2,3,4)i = , which are 

shown in Table 1.17. By ranking ( )is h ( 1, 2,3,4)i = , we can get the priority of 

the alternatives iA ( 1, 2,3,4)i =  as the values of the parameters λ  and ζ  

change, which are listed in Table 1.17 (Xia and Xu 2011b). 
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Table 1.17. Scores obtained by the ATS-GHFWA operator and the rankings 

 1A  2A  3A  4A  Rankings 

1λ = , 2ζ =  0.5487 0.5833 0.5091 0.6343 4A  2A  1A  3A  

2λ = , 2ζ =  0.5793 0.6195 0.5332 0.6670 4A  2A  1A  3A  

5λ = , 2ζ =  0.6504 0.6973 0.5897 0.7484 4A  2A  1A  3A  

10λ = , 2ζ =  0.6942 0.7462 0.6291 0.7980 4A  2A  1A  3A  

20λ = , 2ζ =  0.7215 0.7751 0.6558 0.8244 4A  2A  1A  3A  

 
From Table 1.17, we can find that the scores obtained by the ATS-GHFWA 

operator become bigger as the value of the parameter λ  increases, and the DMs 

can choose the values of λ  according to their preferences. In Step 2, if we use the 
ATS-GHFWG operator instead of the ATS-GHFWA operator to aggregate the 
values of the alternatives, the scores and the rankings of the alternatives are listed 
in Table 1.18 (Xia and Xu 2011b). 

                             
Table 1.18. Scores obtained by the ATS-GHFWG operator and the rankings 

 1A  2A  3A  4A  Rankings 

1λ = , 2ζ =  0.4875 0.4817 0.4735 0.5332 4A  1A  3A  2A  

2λ = , 2ζ =  0.4529 0.4343 0.4543 0.4769 4A  1A  3A  2A  

5λ = , 2ζ =  0.3741 0.3510 0. 3996 0.3844 3A  4A  1A  2A  

10λ = , 2ζ =  0.3280 0.3036 0.3613 0.3383 3A  4A  1A  2A  

20λ = , 2ζ =  0.3013 0.2758 0.3393 0.3119 3A  4A  1A  2A  

 
It is pointed out that the ranking of the alternatives may change when the values 

of the parameters in the ATS-GHFWG operator change. By analyzing Tables 1.17 
and 1.18, we can find that the scores obtained by the ATS-GHFWG operator 
become smaller as the values of the parameter λ  increase, but the values obtained 
by the ATS-GHFWA operator are always bigger than the ones obtained by the 
ATS-GHFWG operator. 
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1.7   Hesitant Multiplicative Aggregation 

By giving a careful check, we can find that the HFE is described by using the 0.1-
0.9 scale (see Table 1.19), which is uniformly distributed between 0 and 1, but an 
asymmetric distribution, such as the 1-9 scale (Saaty 1980, see Table 1.19) may be 
more suitable in many practical problems, especially when we describe the 
priority degree that an alternative is prior to another in a decision making problem, 
it is because that our preferences are not symmetric distributed between 
“preferred” and “not preferred” but sometimes asymmetric to our intuitions. The 
law of diminishing marginal utility in economics is a good example. To invest the 
same resources to a company with bad performance and to a company with good 
performance, the former enhances more quickly than the latter. In other words, the 
gap between the grades expressing good information should be bigger than the one 
between the grades expressing bad information. Saaty’s 1-9 scale is a useful tool 
to deal with such a situation. Motivated by this idea, we propose the hesitant 
multiplicative set (HMS) which describes the membership degree that an element 
to a set by using Saaty’s 1-9 scale instead of the 0.1-0.9 scale in HFSs.  

Table 1.19. The comparison between the 0.1-0.9 scale and the 1-9 scale 

1-9 scale 0.1-0.9 scale Meaning 

1

9
 0.1 Extremely not preferred 

1

7
 0.2 Very strongly not preferred 

1

5
 0.3 Strongly not preferred 

1

3
 0.4 Moderately not preferred 

1 0.5 Equally preferred  

3 0.6 Moderately preferred  

5 0.7 Strongly preferred 

7 0.8 Very strongly preferred 

9 0.9 Extremely preferred 

Other values between 1 
and 9 

Other values between 0 
and 1 

Intermediate values used to 
present compromise 
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Given an example, if we provide the degree that the alternative iA  is prior to 

the alternative jA , a decision organization is authorized to get a more reasonable 

result, if some DMs in the decision organization provide 1

7
, some provide 1

3
, and 

others may provide 5 , and these three parts cannot persuade each other, therefore, 

the preference information that that the alternative iA  is prior to the alternative 

jA  can be represented by a HME 
1 1

, ,5
7 3
 
 
 

, which is the basic unit of a HMS.  

It is noted that all t-norms and t-conorms are only suitable for the values 
between 0  and 1, we can do some extensions for the usual t-norms and t-
conorms and give the following definitions. 

                             
Definition 1.46 (Xia and Xu 2011c). A function ET : (0, ) (0, ) (0, )+∞ × +∞ → +∞  

is called an extended t-norm if it satisfies the following four conditions: 
                             

(1) ( , )ET x x+∞ = , for all x . 

                             
(2) ( , ) ( , )ET x y ET y x= , for all x  and y . 

                             
(3) ( , ( , )) ( ( , ), )ET x ET y z ET ET x y z= , for all x , y  and z . 

                             

(4) If 'x x≤  and 'y y≤ , then ' '( , ) ( , )ET x y ET x y≤ . 

                             
Definition 1.47 (Xia and Xu 2011c).  A function ES : (0, ) (0, ) (0, )+∞ × +∞ → +∞  

is called an extended t-conorm if it satisfies the following four conditions: 
                             

(1) (0, )ES x x= , for all x . 

                             
(2) ( , ) ( , )ES x y ES y x= , for all x  and y . 

                             
(3) ( , ( , )) ( ( , ), )ES x ES y z ES ES x y z= , for all x , y  and z . 

                             

(4) If 'x x≤  and 'y y≤ , then ' '( , ) ( , )ES x x ES x x≤ . 

                             
Definition 1.48 (Xia and Xu 2011c). An extended t-norm function ( , )ET x y  is 

called an extended Archimedean t-norm if it is continuous and ( , )ET x x x<  for  
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all (0, )x∈ +∞ . An extended Archimedean t-norm is called strictly extended 

Archimedean t-norm if it is strictly increasing in each variable for 
, (0, )x y ∈ +∞ . 

                             
Definition 1.49 (Xia and Xu 2011c).  A t-conorm function ( , )ES x y  is called an 

extended Archimedean t-conorm if it is continuous and ( , )ES x x x>  for all 

(0, )x ∈ +∞ . An extended Archimedean t-conorm is called strictly extended 

Archimedean t-conorm if it is strictly increasing in each variable for 
, (0, )x y ∈ +∞ . 

                             
Similar to the Archimedean t-norm, the extended Archimedean t-norm can be 

expressed via its multiplicative generator τ  as 1( , ) ( ( ) ( ))ET x y x yτ τ τ−= ⋅   , 

and similarly, applied to its dual extended t-conorm 1( , ) ( ( ) ( ))ES x y s s x s y−= ⋅    

with 
1

( )s t
t

τ  =  
 

  . We assume that a multiplicative generator of a continuous 

extended Archimedean t-norm is a strictly decreasing function τ : 

(0, ) (1, )∞ → ∞  such that lim ( ) 1
t

tτ
→+∞

= . If we assign specific forms to the 

function τ , then some specific extended t-norms and t-conorms can be obtained 
as follows (Xia and Xu 2011c): 

                             

(1) Let 
1

( )
t

t
t

τ += , then ( ) 1s t t= + , 1 1
( )

1
t

t
τ − =

−
 , 1( ) 1s t t− = − , and 

we have 
                             

( , ) ( 1)( 1) 1AES x y x y= + + − , ( , )
( 1)( 1)

A xy
ET x y

x y xy
=

+ + −
    (1.256) 

                             
which we call an extended Algebraic t-conorm and extended Algebraic t-norm. 

                             

(2) Let 
2

( )
t

t
t

τ += , then ( ) 2 1s t t= + , 1 2
( )

1
t

t
τ − =

−
 , 1 1

( )
2

t
s t− −= , 

and we have 
                             

(2 1)(2 1) 1
( , )

2
E x y

ES x y
+ + −= , 

2
( , )

( 2)( 2)
E xy

ET x y
x y xy

=
+ + −

  (1.257) 

                             
which we call the extended Einstein t-conorm and extended Einstein t-norm. 
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(3) Let ( )
t

t
t

ζτ += , 0ζ > , then ( ) 1s t tζ= + , 1( )
1

t
t

ζτ− =
−

 , 

1 1
( )

t
s t

ζ
− −= , and we have 

                             
( 1)( 1) 1

( , )H x y
ES x yζ

ζ ζ
ζ

+ + −= , ( , )
( )( )

H xy
ET x y

x y xyζ
ζ

ζ ζ
=

+ + −
, 0ζ >            

                                                             (1.258) 
                             

which we call an extended Hamacher t-conorm and extend Hamacher t-norm. 
Especially, if 1ζ = , then the extended Hamacher t-conorm and t-norm reduce to 

the extended Algebraic t-conorm and t-norm respectively; If 2ζ = , then the 

extended Hamacher t-conorm and t-norm reduce to the extended Einstein t-
conorm and t-norm respectively. 

It is noted that the HFE uses the uniform distribution to express the 
membership degree of an element to a set, if we use the non-uniform distribution 
instead of uniform distribution scale to describe the membership degree that an 
element to a set, then we introduce the following definition: 

                             
Definition 1.50 (Xia and Xu 2011c).  Let X  be a fixed set, a hesitant 
multiplicative set (HMS) on X  is in terms of a function e  that when applied to 

X  returns a subset of 
1

,a
a
 
  

, 1a > . 

                             
To be easily understood, we express the HMS by { , ( ) | }x e x x Xϒ = < > ∈ , 

where ( )e x  is a set of some values in 
1

,a
a
 
  

, denoting the possible 

membership degrees of the element x X∈  to the set ϒ . For convenience, we 

call ( )e e x=  a hesitant multiplicative element (HME) and M  the set of all 

HMEs. To rank the HMEs, we give the following comparison laws: 
                             

Definition 1.51 (Xia and Xu 2011c).  For a HME e , 
1

( ) el

e

s e
η

η
∈

= ∏  is called 

the score of e , where el  is the number of the elements in e . For two HMEs 1e  

and 2e , if 1 2( ) ( )s e s e> , then 1 2e e> . 

                             
Based on the extended t-norms and t-norms, we introduce some operations for 

HMEs as follows: 
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Definition 1.52 (Xia and Xu 2011c).  Let e , 1e  and 2e  be three HMEs, and  

0λ > , then 
                             

(1) ( ){ }1 ( ( ))
e

eλ λ

η
τ τ η−

∈
=   . 

                             

(2) ( ){ }1 ( ( ))
e

e s s λ

η
λ η−

∈
=   . 

                             

(3) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

e e
e e

η η
τ τ η τ η−

∈ ∈
⊗ = ⋅   . 

                             

(4) ( ){ }
1 1 2 2

1
1 2 1 2

,
( ) ( )

e e
e e s s s

η η
η η−

∈ ∈
⊕ = ⋅   . 

                             
The above functions τ  and s  are defined as before.  

                             

Especially, if 
1

( )
t

t
t

τ += , then we have 

(5) 
(1 )e

e
λ

λ
λ λη

η
η η∈

 
=  + − 
 , 0λ > . 

                             

(6) { }(1 ) 1
e

e λ

η
λ η

∈
= + − , 0λ > . 

                             

(7) 
1 1 2 2

1 2
1 2

,
1 2 1e e

e e
η η

η η
η η∈ ∈

 
⊗ =  + + 

 . 

                             

(8) 
1 1 2 2

1 2 1 2 1 2
,

{ }
e e

e e
η η

η η η η
∈ ∈

⊕ = + + . 

                             
All the above are based on the extended Algebraic t-conorm and extended 
Algebraic t-norm. 

                             

If 
2

( )
t

t
t

τ += , then we have 

(9) 
2

(2 )e
e

λ
λ

λ λη

η
η η∈

 
=  + − 
 , 0λ > . 

 



150 1   Hesitant Fuzzy Aggregation Operators and Their Applications 

 

(10) 
(1 2 ) 1

2e
e

λ

η

ηλ
∈

 + −=  
 
 , 0λ > . 

                             

(11) 
1 1 2 2

1 2
1 2

,
1 2 1 2

2

(2 )(2 )e e
e e

η η

η η
η η η η∈ ∈

 
⊗ =  + + − 

 . 

                             

(12) 
1 1 2 2

1 2
1 2

,

(1 2 )(1 2 ) 1

2e e
e e

η η

η η
∈ ∈

+ + − ⊕ =  
 

 . 

                             
All the above are based on the extended Einstein t-conorm and the extended 
Einstein t-norm. 

                             

If ( )
t

t
t

ζτ += , 0ζ > , then we have 

                             

(13) 
( )e

e
λ

λ
λ λη

ζη
η ζ η∈

 
=  + − 
 , 0λ > . 

                             

(14) 
( 1) 1

e
e

λ

η

ζηλ
ζ∈

 + −=  
 
 , 0λ > . 

                             

(15) 
1 1 2 2

1 2
1 2

,
1 2 1 2( )( )e e

e e
η η

ζη η
η ζ η ζ η η∈ ∈

 
⊗ =  + + − 

 . 

                             
                             

(16) 
1 1 2 2

1 2
1 2

,

( 1)( 1) 1
e e

e e
η η

ζη ζη
ζ∈ ∈

 + + −⊕ =  
 

 . 

                             
All the above are based on the extended Hamacher t-conorm and the extended 
Hamacher t-norm. Especially, if 1ζ = , then (13)-(16) reduce to (5)-(8); If 

2ζ = , then (13)-(16) reduce to (9)-(12). 

Some relationships can be further established for these operations on HMEs. 
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Theorem 1.48 (Xia and Xu 2011c).  For three HMEs e , 1e  and 2e , 

1c

e
e

η η∈

 =  
 
 ,  the following are valid:  

                             

(1) ( ) ( )c ce eλ λ= . 

                             

(2) ( )( )
cce eλλ = . 

                             

(3) 1 2 1 2( )c c ce e e e⊗ = ⊕ . 

                             

(4) 1 2 1 2( )c c ce e e e⊕ = ⊗ . 

                                                         

Proof.  For three HMEs e , 1e  and 2e , we have 
                             

(1) ( ) ( ){ } ( )1 11
( ( ))

c
cc

e e
e s s e

λ
λ λ

η η
τ τ η λ

η
− −

∈ ∈

        = = =             
     . 

                             

(2) ( ){ } ( )1 11
( ( ))

c
cc

e e
e s s e

λ
λ λ

η η
λ τ τ η

η
− −

∈ ∈

        = = =             
     . 

                             

(3) 
1 1 2 2

1
1 2

,
1 2

1 1c c

e e
e e s s s

η η η η
−

∈ ∈

      ⊕ = ⋅            
    

                             

( ) ( )
1 1 2 2

1 21
,

1 2

1

( ) ( )
c

e e
e e

η η τ τ η τ η−∈ ∈

  = = ⊗ ⋅  


  
. 

                             

(4) 
1 1 2 2

1
1 2

,
1 2

1 1c c

e e
e e

η η
τ τ τ

η η
−

∈ ∈

      ⊗ = ⋅            
    

                             

( ) ( )
1 1 2 2

1 21
,

1 2

1

( ) ( )
c

e e
e e

s s sη η γ γ−∈ ∈

  = = ⊕ ⋅  


  
. 

                             
Next, we introduce several extended t-norm and t-conorm based aggregation 

operators for HMEs, and investigate their desirable properties: 
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Definition 1.53 (Xia and Xu 2011c).  Let ie ( 1, 2, ,i n=  ) be a collection of 

HMEs and 1 2( , )nw w w w Τ=   the weight vector of them with [0,1]iw ∈ , 

1, 2,...,i n= , and 
1

1
n

i
i

w
=

= . If  

                             

                ATS-HMWA 1 2( , , , )ne e e =
1

n

i i
i

w e
=
⊕                         (1.259) 

                             

and 

                ATS-HMWG 1 2
1

( , , , ) i

n
w

n i
i

e e e e
=

= ⊗                            (1.260) 

                             
then ATS-HMWA and ATS-HFWG are called an extended Archimedean t-norm 
and t-conorm based hesitant multiplicative weighted averaging (ATS-HMWA) 
operator and an extended Archimedean t-norm and t-conorm based hesitant 
multiplicative weighted geometric (ATS-HMWG) operator, respectively. 

                             

Theorem 1.49 (Xia and Xu 2011c).  Let ie ( 1, 2, ,i n=  ) be a collection of 

HMEs and 1 2( , )nw w w w Τ=   the weight vector of them with [0,1]iw ∈ , 

1, 2,...,i n= , and 
1

1
n

i
i

w
=

= , then 

ATS-HMWA
1 1 2 2

1
1 2

, , , 1

( , , , ) ( ( )) i

n n

n
w

n i
e e e i

e e e s s
η η η

η−

∈ ∈ ∈ =

  =   
  
∏


        (1.261) 

                             

and 
                             

ATS-HMWG
1 1 2 2

1
1 2

, , , 1

( , , , ) ( ( )) i

n n

n
w

n i
e e e i

e e e
η η η

τ τ η−

∈ ∈ ∈ =

  =   
  
∏


        (1.262) 

                             
Proof.  By using the mathematical induction on n : For 2n = , we have 

                             

ATS-HMWA
2

1 2 1 1 2 2
1

( , ) i i
i

e e w e w e w e
=

= ⊕ = ⊕  

                             

( )( ) ( )( )( ){ }1 2

1 1 2 2

1 1 1
1 2

,
( ( )) ( ( ))w w

e e
s s s s s s s

η η
η η− − −

∈ ∈
= ⋅        

                             

( ){ }1 2

1 1 2 2 1 1 2 2

2
1 1

1 2
, , 1

( ( )) ( ( )) ( ( )) iww w
i

e e e e i

s s s s s
η η η η

η η η− −

∈ ∈ ∈ ∈ =

  = ⋅ =   
  
∏       

(1.263) 
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Suppose the first equation holds for n k= , that is, 
                             

ATS-HMWA 1 2 1 1 2 2
1

( , , , )
k

k i i k k
i

e e e w e w e w e w e
=

= ⊕ = ⊕ ⊕ ⊕   

                             

1 1 2 2

1

, , , 1

( ( )) i

k k

k
w

i
e e e i

s s
η η η

η−

∈ ∈ ∈ =

  =   
  
∏


         (1.264) 

then 
                             

ATS-HMWA 1 2 1 1 1
1

( , , , , )
k

k k i i k k
i

e e e e w e w e+ + +=
= ⊕ ⊕  

                             

( ){ }1

1 1 2 2 1 1

1 1
1

, , , 1

( ( )) ( ( ))i k

k k k k

k
w w

i k
e e e ei

s s
η η η η

τ τ η η +

+ +

− −
+

∈ ∈ ∈ ∈=

  = ⊕  
  
∏


      

                             

( )1

1 1 2 2 1 1

1 1 1
1

, , , , 1

( ( )) (( ( )) )i k

k k k k

k
w w

i k
e e e e i

s s s s s s s
η η η η

η η +

+ +

− − −
+

∈ ∈ ∈ ∈ =

     = ⋅          
∏


        

                             

1

1 1 2 2 1 1

1
1

, , , , 1

( ( )) ( ( ))i k

k k k k

k
w w

i k
e e e e i

s s s
η η η η

η η +

+ +

−
+

∈ ∈ ∈ ∈ =

  = ⋅  
  
∏


    

                             

1 1 2 2 1 1

1
1

, , , , 1

( ( )) i

k k k k

k
w

i
e e e e i

s s
η η η η

η
+ +

+
−

∈ ∈ ∈ ∈ =

  =   
  
∏


                             (1.265) 

                             
Similarly, we can prove another part of the theorem, which completes the 

proof. 
                             

Definition 1.54 (Xia and Xu 2011c).  Let ie ( 1, 2, ,i n=  ) be a collection of 

HMEs and 1 2( , )nw w w w Τ=    the weight vector of them with [0,1]iw ∈ , 

1, 2,...,i n= , 
1

1
n

i
i

w
=

=  and 0λ > . If  

ATS-GHMWA

1

1 2
1

( , , , )
n

n i i
i

e e e w e
λλ

=

 = ⊕ 
 

                    (1.266) 

                             
and 
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ATS-GHMWG 1 2
1

1
( , , , ) i

n
w

n i
i

e e e eλ
λ =

= ⊗                        (1.267) 

                             
then ATS-GHMWA and ATS-GHMWG are called the extended Archimedean  
t-norm and t-conorm based generalized hesitant fuzzy weighted averaging (ATS-
GHMWG) operator and the extended Archimedean t-norm and t-conorm based 
generalized hesitant fuzzy weighted geometric (ATS-GHFWG) operator, 
respectively. Especially, if 1λ = , then the ATS-GHMWA and ATS-GHMWG 
operators reduce to the ATS-HMWA and ATS-HMWG operators, respectively. 

                             

Theorem 1.50 (Xia and Xu 2011c).  Let ie ( 1, 2, ,i n=  ) be a collection of 

HMEs and 1 2( , )nw w w w Τ=   the weight vector of them with [0,1]iw ∈ , 

1, 2,...,i n= , 
1

1
n

i
i

w
=

= , and 0λ > , then 

                             

ATS-GHMWA 1 2( , , , )ne e e  

                             

( )
1 1 2 2

1

1 1 1

, , , 1

( (( ( )) ))
i

n n

n w

i
e e e i

s s
λ

λ

η η η
τ τ τ τ η− − −

∈ ∈ ∈ =

  
     =            
  

∏


         (1.268) 

                             
and 

                             

ATS-GHMWG 1 2( , , , )ne e e  

                             

( )( )( )
1 1 2 2

1

1 1 1

, , , 1

( ( ))
i

n n

n w

i
e e e i

s s s s
λ

λ

η η η
τ τ η− − −

∈ ∈ ∈ =

  
     =            
  

∏


          (1.269) 

                             

Proof.  Since ( ){ }1 ( ( ))
i i

i i
e

eλ λ

η
τ τ η−

∈
=   , then we have 

                             

( )( )( )
1 1 2 2

1 1

1 , , , 1

( ( ))
i

n n

nn w

i i i
i e e e i

w e s sλ λ

η η η
τ τ η− −

= ∈ ∈ ∈ =

  ⊕ =   
  
∏


          (1.270) 

                             
and 

                             



1.7   Hesitant Multiplicative Aggregation 155 

 

ATS-GHMWA

1

1 2
1

( , , , )
n

n i i
i

e e e w e
λλ

=

 = ⊕ 
 

   

                             

( )( )( )
1 1 2 2

1

1 1 1

, , , 1

( ( ))
i

n n

n w

i
e e e i

s s
λ

λ

η η η
τ τ τ τ η− − −

∈ ∈ ∈ =

  
     =            
  

∏


           (1.271) 

                             
Similarly, we can prove another part of the theorem, which completes the 

proof. 
Some properties of the ATS-GHMWA and ATS-GHMWG operators can be 

discussed as follows: 
                             

Theorem 1.51 (Xia and Xu 2011c).  If all ( 1, 2,..., )ie i n=  are equal, i.e., 

ie e= , for all i , then 
                             

                     ATS-GHMWA 1 2( , ,..., )ne e e e=                          (1.272) 
                             

and 
                             

                   ATS-GHMWG 1 2( , ,..., )ne e e e=                          (1.273) 
                             

Proof.  Let ie e= , we have 
                             

ATS-GHMWA 1 2( , ,..., )ne e e = ATS-GHMWA ( , ,..., )e e e  
                             

( )( )( )
1

1 1 1

1
1

( ( ))
i

nn w

i
i e i

w e s s
λ

λ

η
τ τ τ τ η− − −

= ∈ =

  
     = ⊕ =            
  

∏        

                             
{ }

e
e

η
η

∈
= =                                                                                       (1.274) 

                             
Similarly, we can prove another part of the theorem, which completes the proof. 

                             
Theorem 1.52 (Xia and Xu 2011c).  Let ie  and * ( 1,2,..., )ie i n=  be two 

collections of HMEs, if *
i iη η≤  for all i ieh Î  and 

* *
i ieh Î , then 

                             
ATS-GHMWA 1 2( , ,..., )ne e e ≤ ATS-GHMWA * * *

1 2( , ,..., )ne e e         (1.275) 
                             

and  
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     ATS-GHMWG 1 2( , ,..., )ne e e ≤ ATS-GHMWG * * *
1 2( , ,..., )ne e e         (1.276) 

                             

Proof.  We have known that 
1

( )s t
t

τ  =  
 

  , and τ : (0, ) (1, )+∞ → +∞  is a 

strictly decreasing function, then ( )s t  is a strictly increasing function. Since 
*

i iη η≤  for all i ieh Î  and 
* *
i ieh Î , then we have 

                             

( )( )( )
1

1 1 1

1

( ( ))
i

n w

i
i

s s
λ

λτ τ τ τ η− − −

=

 
    
         
 

∏       

( )( )( )
1

1 1 1 *

1

( ( ))
i

n w

i
i

s s
λ

λτ τ τ τ η− − −

=

 
    ≤          
 

∏                    (1.277) 

                             
then 

                             

      ATS-GHMWA 1 2( , ,..., )ne e e ≤ ATS-GHMWA ( )* * *
1 2, ,..., ne e e      (1.278) 

                             
Similarly, we can prove another part of the theorem, which completes the proof. 

                             

Theorem 1.53 (Xia and Xu 2011c).  Let ie ( 1, 2, , )i n=   be a collection of 

HMEs, and max{ }
i i

i
ie

e
η

η+

∈
=  , min{ }

i i

i
ie

e
η

η−

∈
=  , then 

                             

                e− ≤ ATS-GHMWA 1 2( , ,..., )ne e e e+≤                        (1.279) 

                             
and 

                             

               e− ≤ ATS-GHMWG 1 2( , ,..., )ne e e e+≤                       (1.280)  

                             
If the multiplicative generator τ  is assigned different forms, then some 

specific aggregation operators can be obtained as follows: 
                             

Case 1.  If 
1

( )
t

t
t

τ += , then the ATS-GHMWA and ATS-GHMWG operators 

reduce to the following: 
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η η η
λ λ

η η

η η η

+ −

∈ ∈ ∈ + + −

 
− =  

 − − 


 


  
      (1.281) 

                             
and 

                             

GHMWG
1 1 2 2

1 1

1 2 1
, , ,

( ) ( )
( , ,..., )

( )
n n

n
e e e

e e e
λ λ

η η η
λ

η η η

η η

+ + −

∈ ∈ ∈ + −

 
− − =  

 − 


  


 
      (1.282) 

                             
where 

                             

           
1

(1 ) i

n
w

i
i

λη η+

=

= +∏ , ( )
1

(1 )
i

n w

i i
i

λ λη η η−

=

= + −∏            (1.283) 

                             
and 

                             

           
1

(1 ) i

n
w

i
i

λη η+

=

= +∏ , ( )
1

(1 ) 1
i

n w

i
i

λη η−

=

= + −∏             (1.284) 

                             
which are the generalized hesitant multiplicative weighted averaging (GHMWA) 
operator and the generalized hesitant multiplicative weighted geometric 
(GHMWG) operator, respectively.  

                             

Case 2.  If 
2

( )
t

t
t

τ += , then the ATS-GHMWA and ATS-GHMWG operators 

reduce to the following: 
                             

GEHMWA
1 1 2 2

1

1 2 1 1
, , ,

2( )
( , ,..., )

( 3 ) ( )
n n

n
e e e

e e e
λ

η η η
λ λ

η η

η η η η

+ −

∈ ∈ ∈ + − + −

 
− =  

 + − − 


 


   
   (1.285) 

                             
and 
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GEHMWG
1 1 2 2

1 1

1 2 1
, , ,

( 3 ) ( )
( , ,..., )

2( )
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n
e e e

e e e
λ λ

η η η
λ

η η η η

η η

+ − + −

∈ ∈ ∈ + −

 
+ − − =  

 − 


   


 
  (1.286) 

 
where 
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i i
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1

(2 )
i
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i i
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λ λη η η−

=

= + −∏     (1.287) 

                             
and 

                             

         ( )
1

3 (1 2 )
i

n w

i
i

λη η+

=

= + +∏ , ( )
1

(1 2 ) 1
i

n w

i
i

λη η−

=

= + −∏       (1.288) 

                             
which are the generalized Einstein hesitant multiplicative weighted averaging 
(GEHMWA) operator and the generalized Einstein hesitant multiplicaative 
weighted geometric (GEHMWG) operator, respectively. 

                             

Case 3. If ( )
t

t
t

ζτ += , 0ζ > , then the ATS-GHMWA and ATS-GHMWG 

operators reduce to the following: 
                             

HHMWA

( )( )1 1 2 2

1

1 2 1 1
, , ,

2

( )
( , ,..., )

1 ( )
n n

n
e e e

e e e
λ

η η η
λ λ

ζ η η

η ζ η η η

+ −

∈ ∈ ∈ + − + −
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 + − − − 



 


   
  

(1.289) 
                             

and 
                             

HHMWG
( )( )

1 1 2 2

1 1
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( , ,..., )
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η η η
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(1.290) 
                             

where 
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and 
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= + + −∏ , ( )
1

( 1) 1
i

n w

i
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=
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which are the generalized Hammer hesitant multiplicative weighted averaging 
(GHHMWA) operator and the generalized Hammer hesitant multiplicative 
weighted geometric (GHHMWG) operator, respectively. Especially, if 1ζ = , 

then the GHHMWA operator reduces to the GHMWA operator and the 
GHHMWG operator reduces to the GHMWG operator; If 2ζ = , then the 

GHHMWA operator reduces to the GEHMWA operator and the GHHMWG 
operator reduces to the GEHMWG operator. 

                             

Example 1.26 (Xia and Xu 2011c).  Let 1

1 3
,

4 7
h

 = 
 

, 2

2

3
h

 =  
 

 and 

3

1 3 2
, ,

9 7 3
h

 = 
 

 be three HMEs, whose weight vector is (0.2,0.3,0.5)w Τ= , then 

we can use the ATS-GHIMWA or ATS-GHIMWG operator to aggregate them, 

without loss of generality, let ( )
t

t
t

ζτ += , 3ζ = , and 2λ = , then we have 

                             

h = ATS-GHMWA 1 2 3( , , ) {0.4298,0.4534,0.4985,0.5175,0.6148,0.6290}h h h =  

( ) 0.5186s h =  

                             

h = ATS-GHFWG 1 2 3( , , ) {0.2069,0.2274,0.4201,0.4794,0.5082,0.5981}h h h =  

( ) 0.3772s h =  

                             
As the values of the parameters ζ  and λ  between 0  and 1, the scores 

obtained by using the ATS-GHMWA and ATS-GHMWG operators are given in 
Figs. 1.10-1.11 (Xia and Xu 2011c), respectively. 
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Fig. 1.10. Scores obtained by the ATS-GHMWA operator 
 
 

 
 

Fig. 1.11. Scores obtained by the ATS-GHFWG operator 
 
 

It is noted that the scores obtained by the ATS-GHMWA operator are 
increasing as the values of the parameter λ  increase, while the scores obtained by 
the ATS-GHMWG operator are quite the opposite. However, the scores obtained 
by the ATS-GHMWA operator are always bigger than the ones obtained by the 
ATS-GHMWG operator. 
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Finally, we discuss the relationships of the developed aggregation operators: 
                             

Theorem 1.54 (Xia and Xu 2011c).  Let ie ( 1, 2, , )i n=   be a collection of 

HMEs with the weight vector 1 2( , , , )nw w w w Τ=   such that [0,1]iw ∈ , 

1, 2,...,i n= , 
1

1
n

i
i

w
=

=  and 0λ > , then 

 

(1) ATS-HMWA ( )1 2, , , (c c c
ne e e = ATS-HMWG 1 2( , , , ))c

ne e e . 

                             

(2) ATS-HMWG ( )1 2, , , (c c c
ne e e = ATS-HMWA 1 2( , , , ))c

ne e e . 

                             

(3) ATS-GHMWA 1 2( , , , ) (c c c
ne e e = ATS-GHMWG 1 2( , , , ))c

ne e e . 

                             

(4) ATS-GHMWG ( )1 2, , , (c c c
ne e e = ATS-GHMWA 1 2( , , , ))c

ne e e . 
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Chapter 2 

Distance, Similarity, Correlation, Entropy 
Measures and Clustering Algorithms for 
Hesitant Fuzzy Information  

Distance and similarity measures are fundamentally important in a variety of 
scientific fields such as decision making, pattern recognition, machine learning and 
market prediction, lots of studies have been done about this issue on fuzzy sets 
(Turksen and Zhong 1988; Liu 1992; Bustince 2000; Candan et al. 2000). Among 
them, the most widely used distance measures for two fuzzy sets are the Hamming 
distance, the normalized Hamming distance, the Euclidean distance, and the 
normalized Euclidean distance (Diamond and Kloeden 1994; Kacprzyk 1997; 
Chaudhuri and Rosenfeld 1999). Later, a number of other extensions of the above 
distance measures have been developed for linguistic fuzzy sets (Xu 2005b) and 
intuitionistic fuzzy sets (Grzegorzewski 2004; Hung and Yang 2004, 2007; Li  
and Cheng 2002; Li et al. 2007; Liang and Shi 2003; Mitchell 2003; Szmidt and 
Kacprzyk 2000, 2001a; Wang and Xin 2005; Xu 2007b; Xu and Chen 2008a). For 
example, based on the Hamming distance, Xu (2005b) introduced the concepts of 
deviation degrees and similarity degrees between two linguistic values, and 
between two linguistic preference relations, respectively. Li and Cheng (2002) 
generalized Hamming distance and Euclidean distance by adding a parameter and 
gave a similarity formula for intuitionistic fuzzy sets only based on the membership 
degrees and the non-membership degrees. Some authors (Liang and Shi 2003; 
Mitchell 2003; Szmidt and Kacprzyk 2000, 2001a; Wang and Xin 2005) improved 
Li and Cheng’s method (2002). Hung and Yang (2004) and Grzegorzewski (2004) 
suggested a lot of similarity measures for intuitionistic fuzzy sets and 
interval-valued fuzzy sets based on Hausdorff metric. Xu and Chen (2008a) gave a 
comprehensive overview of distance and similarity measures for intuitionistic fuzzy 
sets and developed several continuous distance and similarity measures for 
intuitionistic fuzzy sets. Wu and Mendel (2009) generalized Jaccard’s similarity 
measure for T-2 fuzzy sets (Mendel 1999) and proposed a new similarity measure 
for interval T-2 fuzzy sets and compared it with the existing five methods 
(Gorzalczany 1987; Bustince 2000; Mitchell 2005; Wu and Mendel 2008; Zeng and 
Li 2006). Yang and Lin (2009) gave a few similarity and inclusion measures for T-2 
fuzzy sets and combined them with Yang and Shih (2001)’s algorithms as a 
clustering method for type-2 fuzzy data. 
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Distance or similarity measures have attached a lot of attention in the last 
decades due to the fact that they can be applied to many areas such as pattern 
recognition (Li and Cheng 2002), clustering analysis (Yang and Lin 2009), 
approximate reasoning (Wang et al. 2002), image processing (Pal and King 1981), 
medical diagnosis (Szmidt and Kacprzyk 2001a) and decision making (Xu 2010b). 
A lot of distance and similarity measures have been developed for fuzzy sets 
(Zadeh 1965), intuitionistic fuzzy sets (Atanassov 1986), linguistic fuzzy sets (Xu 
2005), T-2 fuzzy sets (Dubois and Prade 1980; Miyamoto 2005), and fuzzy 
multisets (Yager 1986; Miyamoto 2000). Recently, Xu and Xia (2011b) originally 
developed a series of distance measures for hesitant fuzzy sets, based on which the 
corresponding similarity measures were proposed.  

Correlation indicates how well two variables move together in a linear fashion. 
In other words, correlation reflects a linear relationship between two variables. It is 
an important measure in data analysis, in particular in decision making, predicting 
market behavior, medical diagnosis, pattern recognition, and other real world 
problems concerning environmental, political, legal, economic, financial, social, 
educational and artistic systems, etc. (Szmidt and Kacprzyk 2010). Hung and Wu 

(2001) used the concept of “expected value” to define the correlation coefficient of 
fuzzy numbers, which lies in [ 1,1]− . Hong (2006) considered the computational 

aspect of the wT -based extension principle when the principle is applied to a 

correlation coefficient of L–R fuzzy numbers and gave the exact solution of a fuzzy 
correlation coefficient without programming or the aid of computer resources. In 
intuitionistic fuzzy environments, Gerstenkorn and Mańko (1991) defined the 
correlation and correlation coefficient of intuitionistic fuzzy sets (Atanassov 1986). 
Bustince and Burillo (1995) introduced the concepts of correlation and correlation 
coefficient of interval-valued intuitionistic fuzzy sets and studied their properties. 
They also introduced two decomposition theorems of the correlation of 
interval-valued intuitionistic fuzzy sets, one in terms of the correlation of 
interval-valued fuzzy sets and the entropy of intuitionistic fuzzy sets, and the other 
theorem in terms of the correlation of intuitionistic fuzzy sets. Hung (2001) and 
Mitchell (2004) derived the correlation coefficient of intuitionistic fuzzy sets from a 
statistical viewpoint by interpreting an intuitionistic fuzzy set as an ensemble of 
ordinary fuzzy sets. Hung and Wu (2002) proposed a method to calculate the 
correlation coefficient of intuitionistic fuzzy sets by means of “centroid”. The 
formula tells us not only the strength of relationship between intuitionistic fuzzy 
sets, but also whether the considered intuitionistic fuzzy sets are positively or 
negatively related. Xu (2006) gave a detailed survey on association analysis of 
intuitionistic fuzzy sets, and pointed out that most existing methods deriving 
association coefficients cannot guarantee that the association coefficient of any two 
intuitionistic fuzzy sets equals one if and only if these two intuitionistic fuzzy sets 
are the same. Xu et al. (2008) utilized a set-theoretic approach to derive the 
association coefficients of intuitionistic fuzzy sets taking into account all the three 
terms (membership degree, non-membership degree, and hesitation margin) 
describing an intuitionstic fuzzy set. Szmidt and Kacprzyk (2010) discussed a 
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concept of correlation for data represented as intuitionistic fuzzy set adopting the 
concepts from statistics, proposed a formula for measuring the correlation 
coefficient (lying in [ 1,1]− ) of intuitionistic fuzzy sets and showed the importance 

to take into account all three terms describing intuitionistic fuzzy sets. Recently, Xu 
and Xia (2011b) investigated the distance and correlation measures for HFEs, and 
then discussed their properties in detail. Chen et al. (2013a) derived some 
correlation coefficient formulas for HFSs and applied them to clustering analysis 
under hesitant fuzzy environments. 

Entropy and cross-entropy are also important research topics in the fuzzy set 
theory, which have been widely used in practical applications, such as pattern 
recognition (Li and Cheng 2002), approximate reasoning (Wang et al. 2002), 
clustering analysis (Yang and Lin 2009), image processing (Pal and King 1981) 
and decision making (Ye 2010), etc. Entropy, first mentioned by Zadeh (1968), is a 
measure of fuzziness. Since its appearance, entropy has received great attentions. 
De Luca and Termini (1972) put forward some axioms to describe the fuzziness 
degree of a fuzzy set (Zadeh 1965), and proposed several entropy formulas based on 
Shannon’s function. Kaufmann (1975) introduced an entropy formula for a fuzzy 
set by a metric distance between its membership degree function and the 
membership function of its nearest crisp set. Another method presented by Yager 
(1979) is to view the fuzziness degree of a fuzzy set in terms of a lack of distinction 
between the fuzzy set and its complement. Later on, other entropies for fuzzy sets 
have been given from different views (Bhandari and Pal 1993; Fan 2002; Kosko 
1993; Liu 1992; Parkash et al. 2008; Shang and Jiang 1997). Since the concepts of 
interval-valued fuzzy set (Zadeh 1975), intuitionistic fuzzy set (Atanassov 1986) 
and rough set (Pawlak 1991) were introduced, the corresponding entropy theories 
have been investigated over the last decades. Burillo and Bustince (1996) presented 
an entropy measure on interval-valued fuzzy sets and intuitionstic fuzzy sets. Zeng 
and Li (2006) proposed a new concept of entropy for interval-valued fuzzy sets with 
a different view from Burillo and Bustince (1996). Zhang et al. (2009) introduced 
an axiomatic definition of entropy for an interval-valued fuzzy set based on distance 
measure which is consistent with the axiomatic definition of entropy of a fuzzy set 
introduced by De Luca and Termimi (1972) and Liu (1992). Szmidt and Kacprzyk 
(2001b) proposed a non-probabilistic entropy measure for intuitionstic fuzzy sets. 
Sen and Pal (2009) proposed classes of entropy measures based on rough set theory 
and its certain generalizations, and performed rigorous theoretical analysis to 
provide some properties which they satisfy. Cross-entropy measures are mainly 
used to measure the discrimination information. Up to now, a lot of research has 
been done about this issue (Buşoniu et al. 2011; Grzegorzewski 2004; Hung and 
Yang 2004, 2007, 2008; Li and Cheng 2002; Liang and Shi 2003; Mitchell 2003; Li 
et al. 2007; Li et al. 2009; Szmidt and Kacprzyk 2000; Xu and Chen 2008a). 
Vlachos and Sergiadis (2007) introduced the concepts of discrimination 
information and cross-entropy for intuitionistic fuzzy sets and revealed the 
connection between the notions of entropies for fuzzy sets and intuitionistic fuzzy 
sets in terms of fuzziness and intuitionism. Hung and Yang (2008) constructed 
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J-divergence of intuitionistic fuzzy sets and introduced some useful distance and 
similarity measures between two intuitionistic fuzzy sets, and applied them to 
clustering analysis and pattern recognition. Based on which, Xia and Xu (2012b) 
proposed some cross-entropy and entropy formulas for intuitionstic fuzzy sets and 
applied them to group decision making. The relationships among the entropy, 
cross-entropy and similarity measures have also attracted great attention (Liu 1992; 
Zeng and Guo 2008; Zeng and Li 2006; Zhang and Jiang 2010; Zhang et al. 2010). 
For example, Liu (1992) systematically gave the axiomatic definitions of entropy, 
distance measure and similarity measure of fuzzy sets and discussed their basic 
relations. Zeng and Li (2006) discussed the relationship between the similarity 
measure and the entropy of interval-valued fuzzy sets in detail and proved three 
theorems that the similarity measure and the entropy of interval-valued fuzzy sets 
can be transformed by each other based on their axiomatic definitions. For 
interval-valued intuitionistic fuzzy sets (Atanassov and Gargov 1989), Zhang and 
Jiang (2009) and Zhang et al. (2010) proposed the concepts of entropy and 
cross-entropy and discussed the connections among some important information 
measures. From the literature review above, we can find that little research has 
been done about hesitant fuzzy information, it is very necessary to develop some 
entropy measures under hesitant fuzzy environment. To do so, Xu and Xia (2012a) 
developed the concepts of entropy and cross-entropy for hesitant fuzzy 
information, and discussed their desirable properties. They analyzed the 
relationships among the proposed entropy, cross-entropy, and similarity measures. 

Clustering refers to a process that combines a set of objects (alternatives, people, 
events, etc.) into clusters with respect to the characteristics of data, and the objects 
belonging to a cluster have a higher similarity than that of different clusters. As one 
of the widely-adopted key tools in handling data information, clustering analysis 
has been applied to the fields of pattern recognition (Bezdek 1998), data mining 
(Han and Kamber 2000), information retrieval (Mizutani et al. 2008; Miyamoto 
2003), and other real world problems concerning social, medical, biological, 
climatic, and financial systems, etc. (Chaira 2011; Kumar et al. 2011; Nikas and 
Low 2011; Zhao and Zhang 2011; Zhao et al. 2011). In a real world, data used for 
clustering may be uncertain and fuzzy, to deal with various types of fuzzy data, a 
number of clustering algorithms corresponding to different fuzzy environments 
(Wu et al. 2011) have been proposed, e.g., intuitionistic fuzzy clustering algorithms 
(Wang et al. 2011; Xu et al. 2008, 2011, 2013; Xu 2009a; Xu and Wu 2010; Zhao et 
al. 2013) involving the correlation coefficient formulas for intuitionistic fuzzy sets 
(Xu et al. 2008) and type-2 fuzzy clustering algorithms (Hwang and Rhee 2007; 
Yang and Lin 2009). However, under the group decision making situations, the 
evaluation information provided by different DMs (experts) may have an obvious 
difference. These fuzzy clustering schemes mentioned above are unable to 
incorporate the differences in the opinions of different DMs, that is, they are 
unsuitable to do clustering under hesitant fuzzy environments. HFSs can be used to 
solve the issue, because they avoid performing data aggregation and can directly 
reflect the differences of the opinions of different DMs. Chen et al. (2013a) used the 
derived correlation coefficient formulas to calculate the degrees of correlation 
among HFSs aiming at clustering different objects. Zhang and Xu (2013) extended 
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the agglomerative hierarchical clustering algorithm to do clustering hesitant fuzzy 
information. Chen et al. (2014) investigated the clustering technique for HFSs 
based on the K-means clustering algorithm which takes the results of hierarchical 
clustering as the initial input. Zhang and Xu (2012) proposed a minimal spanning 
tree (MST) algorithm-based clustering technique to make clustering analysis of 
HFSs via some hesitant fuzzy distances. In the following sections, we shall give a 
detail survey of distance, similarity, correlation and entropy measures and 
clustering algorithms for hesitant fuzzy information.  

2.1   Distance and Similarity Measures for HFSs 

We first introduce the axioms for distance and similarity measures of HFSs: 
 

Definition 2.1 (Xu and Xia 2011b).  Let 1A  and 2A  be two HFSs on X , 

then the distance measure between 1A  and 2A  is defined as 1 2( , )d A A , 

which satisfies the following properties: 
 

(1) 1 20 ( , ) 1d A A≤ ≤ . 
 
(2) 1 2( , ) 0d A A =  if and only if 1 2A A= . 
 
(3) 1 2 2 1( , ) ( , )d A A d A A= . 

 
Definition 2.2 (Xu and Xia 2011b).  Let 1A  and 2A  be two HFSs on X , 

then the similarity measure between 1A  and 2A  is defined as 1 2( , )s A A , 

which satisfies the following properties: 
 

(1) 1 20 ( , ) 1s A A≤ ≤ . 
 
(2) 1 2( , ) 1s A A =  if and only if 1 2A A= . 
 
(3) 1 2 2 1( , ) ( , )s A A s A A= . 

By analyzing Definitions 2.1 and 2.2, it is noted that 
1 2 1 2( , ) 1 ( , )s A A d A A= − , 

accordingly, we mainly discuss the distance measures for HFSs in this section, and 
the corresponding similarity measures can be obtained easily. 

In most cases, 
1 2

( ) ( )A i A ih x h xl l≠ , and for convenience, let { }
1 2

( ) ( )max ,
i A i A ix h x h xl l l=  

for each ix  in X . To operate correctly, we should extend the shorter one until 

both of them have the same length when we compare them. To extend the  
shorter one, the best way is to add a value in it. In fact, we can extend  
the shorter one by adding any value in it which mainly depends on the  
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DMs’ risk preferences. The optimists anticipate desirable outcomes and may add 
the maximum value, while the pessimists expect unfavorable outcomes and may 

add the minimum value. For example, let 
1
( ) {0.1,0.2,0.3}A ih x = , 

2
( ) {0.4,0.5}A ih x = , and 

1 2
( ) ( )A i A ih x h xl l> . To operate correctly, we should 

extend 
2
( )A ih x  until it has the same length with 

1
( )A ih x , the optimist may 

extend 
2
( )A ih x  as 

2
( ) {0.4,0.5,0.5}A ih x =  and the pessimist may extend it 

as 
2
( ) {0.4,0.4,0.5}A ih x = . The results may be different if we extend the 

shorter one by adding different values, which is reasonable because the DMs’ risk 
preferences can directly influence the final decision. The same situation can also be 
found in many existing references (Liu and Wang 2007; Merigó and Gil-Lafuente 
2009; Merigó and Casanovas 2009). Here, we assume that the DMs are all 
pessimistic (with the same reason, the other situations can be studied similarly). 

 
Drawing on the well-known Hamming distance and Euclidean distance, Xu 

and Xia (2011b) defined a hesitant normalized Hamming distance: 
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and a hesitant normalized Euclidean distance: 
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where 

1

( ) ( )j
A ih xσ  and 

2

( ) ( )j
A ih xσ  are the j th largest values in 

1
( )A ih x  and 

2
( )A ih x , respectively, which will be used thereafter. 

Xu and Xia (2011b) further extended the above distance measures and defined 
a generalized hesitant normalized distance: 
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where 0λ > . 

It is noted that the parameter λ  provides the DMs more choices and can be 
assigned different values according to different DMs. It is motivated by the 
generalized idea provided by Yager (2004a), which has been widely applied to 
decision making (Beliakov 2005; Merigó and Gil-Lafuente 2009; Xu and Xia 
2011c; Zhao et al. 2010; Zhou and Chen 2011). 



2.1   Distance and Similarity Measures for HFSs 171 

 

Especially, if 1λ = , then the generalized hesitant normal distance reduces to 

the hesitant normalized Hamming distance; If 2λ = , then it reduces to the 
hesitant normalized Euclidean distance. 

If we apply Hausdorff metric to the distance measure, then a generalized 
hesitant normalized Hausdorff distance is given as: 
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where 0λ > . 

Now we discuss two special cases of the generalized hesitant normalized 
Hausdorff distance (Xu and Xia 2011b):        

 
(1) If 1λ = , then 4 1 2( , )d A A  becomes a hesitant normalized Hamming- 

Hausdorff distance: 
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(2) If 2λ = , then 4 1 2( , )d A A  becomes a hesitant normalized Euclidean- 

Hausdorff distance: 
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Combining the above equations, Xu and Xia (2011b) defined a hybrid hesitant 

normalized Hamming distance, a hybrid hesitant normalized Euclidean distance, 
and a generalized hybrid hesitant normalized distance as follows, respectively: 
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where 0λ > . 
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Usually, the weight of each element ix X∈  should be taken into account, so 

Xu and Xia (2011b) presented the following weighted distance measures for 
HFSs: 

Assume that the weight of the element ix X∈  is iw ( 1, 2, ,i n=  ) with 

[ ]0,1iw ∈ , 1, 2,...,i n= , and 
1

1
n

i
i

w
=

= , then we get a generalized hesitant 

weighted distance:  
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and a generalized hesitant weighted Hausdorff distance: 

   

    
1 2

1

( ) ( )
11 1 2

1

( , ) max ( ) ( )
n

j j
i A i A i

j
i

d A A w h x h x
λλσ σ

=

 = −  
       (2.11) 

 
where 0λ > . 

In particular, if 1λ = , then we obtain a hesitant weighted Hamming distance:  
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and a hesitant weighted Hamming-Hausdorff distance: 
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If 2λ = , then we get a hesitant weighted Euclidean distance: 
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and a hesitant weighted Euclidean-Haudorff distance: 
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Furthermore, Xu and Xia (2011b) developed a generalized hybrid hesitant 
weighted distance combining the generalized hesitant weighted distance and the 
generalized hesitant weighted Hausdorff distance as:  
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where 0λ > .  

In the special cases where 1, 2λ = , 16 1 2( , )d A A  reduces to a hybrid 

hesitant weighted Hamming distance and a hybrid hesitant weighted Euclidean 
distance as follows, respectively: 
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We find that all the above distance measures are discrete, if both the universe of 

discourse and the weight of element are continuous, and the weight of 

[ ],x X a b∈ =  is ( )w x , where [ ]( ) 0,1w x ∈  and ( ) 1
b

a
w x dx = , then we 

define a continuous hesitant weighted Hamming distance, a continuous hesitant 
weighted Euclidean distance and a generalized continuous hesitant weighted 
distance as follows, respectively (Xu and Xia 2011b): 
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where 0λ > . 
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If 
1

( )w x
b a

=
−

, for any [ ],x a b∈ , then the continuous hesitant weighted 

Hamming distance reduces to a continuous hesitant normalized Hamming 
distance: 
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while the continuous hesitant weighted Euclidean distance reduces to a continuous 
hesitant normalized Euclidean distance: 
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and the generalized continuous hesitant weighted distance reduces to a generalized 
continuous hesitant normalized distance: 
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where 0λ > . 

Using the traditional Hausdorff metric, Xu and Xia (2011b) defined a 
generalized continuous hesitant weighted Hausdorff distance as  
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where 0λ > . 

In the special cases where 1, 2λ = , the generalized continuous hesitant 

weighted distance reduces to a continuous hesitant weighted Hamming-Hausdorff 
distance: 
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and a continuous hesitant weighted Euclidean-Hausdorff distance: 
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respectively. 
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If 
1

( )w x
b a

=
−

, for any [ ],x a b∈ , then the generalized continuous 

hesitant weighted distance becomes a generalized continuous hesitant normalized 
distance: 
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where 0λ > , while the continuous hesitant weighted Euclidean-Hausdorff 
distance becomes a continuous hesitant normalized Hamming-Hausdorff distance: 
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and the continuous hesitant weighted Euclidean-Hausdorff distance becomes a 
continuous hesitant normalized Euclidean-Hausdorff distance: 
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Analogous to the generalized hybrid hesitant weighted distance, Xu and Xia 

(2011b) developed a generalized hybrid continuous hesitant weighted distance as: 
    

1 2 1 2

1

( ) ( ) ( ) ( )
31 1 2

1

1 1
( , ) ( ) ( ) ( ) max ( ) ( )

2 2

xlb j j j j
A A A Aa j

jx

d A A w x h x h x h x h x
l

λλ λσ σ σ σ

=

  
= − + −  
   

  (2.31) 

where 0λ > . 

If 
1

( )w x
b a

=
−

, for any [ ],x a b∈ , then the generalized hybrid continuous 

hesitant weighted distance becomes a generalized hybrid continuous hesitant 
normalized distance: 
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where 0λ > . 

Let 1,2λ = , we get a hybrid continuous hesitant weighted Hamming distance 

and a continuous hybrid continuous hesitant weighted Euclidean distance as: 
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and 
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respectively. 

Let 
1

( )w x
b a

=
−

, for any [ ],x a b∈ , then 33 1 2( , )d A A  and 34 1 2( , )d A A  

reduce to a hybrid continuous hesitant normalized Hamming distance: 
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and a hybrid continuous hesitant normalized Euclidean distance: 
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respectively. 

From the foregoing analysis, we find that the generalized hesitant weighted 
distance, the generalized hesitant weighted Hausdorff distance and the generalized 
hybrid hesitant weighted distance are three fundamental distance measures, based 
on which all the other developed distance measures can be obtained under some 
special conditions. 

Xu and Xia (2011b) gave an example (adapted from Kahraman and Kaya 
(2010)) to illustrate the distance measures for HFSs: 

      
Example 2.1 (Xu and Xia 2011b).  Energy is an indispensable factor for the 
social and economic development of societies. Thus the correct energy policy 
affects economic development and environment, the most appropriate energy 
policy selection is very important. Suppose that there are five alternatives (energy 

projects) ( 1,2,3,4,5)iA i =  to be invested, and four attributes to be considered: 

1x : Technological; 2x : Environmental; 3x : Socio-political; 4x : Economic 

(more details about them can be found in Kahraman and Kaya (2010). The 

attribute weight vector is ( )0.15,0.3,0.2,0.35w
Τ= . Several DMs are invited 

to evaluate the performances of the five alternatives. For an alternative under an 
attribute, although all the DMs provide their evaluated values, some of these values 
may be repeated. However, a value repeated more times does not indicate that it has 
more importance than other values repeated less times. For example, the value 
repeated one time may be provided by a DM who is an expert at this area, and the 
value repeated twice may be provided by two DMs who are not familiar with this  
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area. In such cases, the value repeated one time may be more important than the one 
repeated twice. To get a more reasonable result, it is better that the DMs give their 
evaluations anonymously. We only collect all the possible values for an alternative 
under an attribute, and each value provided only means that it is a possible value, 
but its importance is unknown. Thus the times that the values repeated are 
unimportant, and it is reasonable to allow these values repeated many times appear 
only once. The HFSs are just a tool to deal with such cases, and all possible 
evaluations for an alternative under the attributes can be considered as a HFS. The 
results evaluated by the DMs are contained in a hesitant fuzzy decision matrix, 
shown in Table 2.1 (Xu and Xia (2011b)). 

Table 2.1. Hesitant fuzzy decision matrix 

 1x  2x  3x  4x  

1A  {0.5,0.4,0.3} {0.9,0.8,0.7,0.1} {0.5,0.4,0.2} {0.9,0.6,0.5,0.3} 

2A  {0.5,0.3} {0.9,0.7,0.6,0.5,0.2} {0.8,0.6,0.5,0.1} {0.7,0.3,0.4} 

3A  {0.7,0.6} {0.9,0.6} {0.7,0.5,0.3} {0.6,0.4} 

4A  {0.8,0.7,0.4,0.3} {0.7,0.4,0.2} {0.8,0.1} {0.9,0.8,0.6} 

5A  {0.9,0.7,0.6,0.3,0.1} {0.8,0.7,0.6,0.4} {0.9,0.8,0.7} {0.9,0.7,0.6,0.3} 

 
Suppose that the ideal alternative is * {1}A =  seen as a special HFS, we can 

calculate the distance between each alternative and the ideal alternative using our 
distance measures. The shorter the distance, the better the alternative.  

If we use the generalized hesitant weighted distance, the generalized hesitant 
Hausdorff distance, and the generalized hybrid hesitant weighted distance to 
calculate the deviations between each alternative and the ideal alternative, then we 
get the rankings of the alternatives, which are listed in Tables 2.2-2.4 (Xu and Xia 
2011b), respectively, when some values of the parameter are given. We find that 
the rankings are different as the parameter λ  (which can be considered as the 
DMs’ risk attitude) changes, consequently, the proposed distance measures can 
provide the DMs more choices as different values of the parameter are given 
according to the DMs’ risk attitude. 

      
 



178 2   Distance, Similarity, Correlation, Entropy Measures and Clustering Algorithms 

 

Table 2.2. Results obtained by the generalized hesitant weighted distance 

 1A  2A  3A  4A  5A  Rankings 

1λ =  0.4799 0.5027 0.4025 0.4292 0.3558 
5A  3A  4A  1A  2A  

2λ =  0.5378 0.5451 0.4366 0.5052 0.4129 
5A  3A  4A  1A  2A  

6λ =  0.6599 0.6476 0.5156 0.6704 0.5699 
3A  5A  2A  1A  4A  

10λ =  0.7213 0.7046 0.5607 0.7373 0.6537 
3A  5A  2A  1A  4A  

          

Table 2.3. Results obtained by the generalized hesitant weighted Hausdorff distance 

  1A  2A  3A  4A  5A  Rankings 

1λ =  0.7800 0.7700 0.5300 0.6650 0.6200 
3A  5A  4A  2A  1A  

2λ =  0.7849 0.7740 0.5441 0.6953 0.6473 
3A  5A  4A  2A  1A  

6λ =  0.8043 0.7904 0.5889 0.7673 0.7163 
3A  5A  4A  2A  1A  

10λ =  0.8216 0.8063 0.6156 0.7991 0.7597 
3A  5A  4A  2A  1A  

          

Table 2.4. Results obtained by the generalized hybrid hesitant weighted distance 

 1A  2A  3A  4A  5A  Rankings 

1λ =  0.6300 0.6363 0.4662 0.5471 0.4879 
3A  5A  4A  1A  2A  

2λ =  0.6613 0.6595 0.4903 0.6002 0.5301 
3A  5A  4A  2A  1A  

6λ =  0.7321 0.7190 0.5523 0.7188 0.6431 
3A  5A  4A  2A  1A  

10λ =  0.7628 0.7475 0.5748 0.7523 0.6850 
3A  5A  2A  2A  1A  
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Xu and Chen (2008a) defined several ordered weighted distance measures 
whose prominent characteristic is that they can alleviate (or intensify) the 
influence of unduly large (or small) deviations on the aggregation results by 
assigning them low (or high) weights. This desirable characteristic makes the 
ordered weighted distance measures very useful in many actual fields such as 
group decision making, medical diagnosis, data mining, and pattern recognition. 
Yager (2010) generalized Xu and Chen (2008a)’s distance measures and provided 
a variety of ordered weighted averaging norms, based on which he proposed 
several similarity measures. Merigó and Gil-Lafuente (2010) introduced an 
ordered weighted averaging distance operator and gave its application in the 
selection of financial products. In what follows, we introduce some ordered 
distance measures for HFSs . 

Motivated by the ordered weighted idea (Yager 1988), Xu and Xia (2011b) 
defined a hesitant ordered weighted Hamming distance: 
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and a hesitant ordered weighted Euclidean distance: 
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respectively, where ( )jσ  is given as in Section 1.2, and σ : (1, 2, , )n →   

(1, 2, , )n  is a permutation satisfying 
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Generalizing 37 1 2( , )d A A  and 38 1 2( , )d A A , Xu and Xia (2011b) defined a 

generalized hesitant ordered weighted distance measure: 
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where 0λ > . 

With the Hausdorff metric, Xu and Xia (2011b) developed a generalized 
hesitant ordered weighted Hausdorff distance as: 
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where 0λ >  and σ : (1, 2, , ) (1, 2, , )n n→   is a permutation  

satisfying  
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In what follows, we discuss two special cases of the generalized hesitant 

ordered weighted Hausdorff distance (Xu and Xia 2011b): 
          

(1) If 1λ = , then 40 1 2( , )d A A  reduces to a hesitant ordered weighted 

Hamming-Hausdorff distance: 
          

     
1 2

( ) ( )
41 1 2 ( ) ( )

1

( , ) max ( ) ( )
n

j j
i A i A i

j
i

d A A h x h xσ σ
σ σω

=
= −         (2.43) 

          
(2) If 2λ = , then 40 1 2( , )d A A  reduces to a hesitant ordered weighted 

Euclidean-Hausdorff distance: 
          

1 2

1

22( ) ( )
42 1 2 ( ) ( )

1

( , ) max ( ) ( )
n

j j
i A i A i

j
i

d A A h x h xσ σ
σ σω

=

 = −  
      (2.44) 

          
Combining 39 1 2( , )d A A  and 40 1 2( , )d A A , Xu and Xia (2011b) developed a 

generalized hybrid hesitant ordered weighted distance as: 
          

43 1 2( , )d A A  

( )

1 2 1 2

( )

1

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1

1 1
( ) ( ) max ( ) ( )

2 2

x i

i

ln
j j j j

i A i A i A i A i
j

i jx

h x h x h x h x
l

σ

σ

λ
λ λσ σ σ σ

σ σ σ σω
= =

  
  = − + −

    
 





   
  (2.45) 

          
where 0λ > , σ : (1, 2, , ) (1, 2, , )n n→   is a permutation such that  

          

( 1)

1 2 1 2

( 1)

( ) ( ) ( ) ( )
( 1) ( 1) ( 1) ( 1)

1

1 1
( ) ( ) max ( ) ( )

2 2

x i

i

l

j j j j
A i A i A i A i

j
jx

h x h x h x h x
l

σ

σ

σ σ σ σ
σ σ σ σ

+

+

+ + + +
=

− + −
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( )

1 2 1 2

( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1

1 1
( ) ( ) max ( ) ( )

2 2

x i

i

l

j j j j
A i A i A i A i

j
jx

h x h x h x h x
l

σ

σ

σ σ σ σ
σ σ σ σ

=

≥ − + −




    ,  

1, 2, , 1i n= −                         (2.46) 
          
As the parameter and the weight vector change, some special cases can be 

obtained just as discussed before. Let od  denote the ordered distance measures 

defined above, then the ordered similarity measures for HFSs can be given as 

1o os d= − . 

Another important issue is the determination of the weight vectors associated 
with the ordered weighted distance measures. Inspired by Xu and Chen (2008a), 
below we give three ways to determine the weight vectors (Xu and Xia 2011b): 

Considering each element in 1A  and 2A  as a special HFS, 

( )
1 2( ) ( )( ), ( )A i A id h x h xσ σ  ( 1, 2, ,i n=  ) as given in this section, and denoting 

σ , σ  and σ  as σ , we have 
          

(1) Let  

   
( )
( )

1 2

1 2

( ) ( )

( ) ( )
1

( ), ( )

( ), ( )

A i A i

i n

A k A k
k

d h x h x

d h x h x

σ σ

σ σ

ω

=

=


, 1, 2, ,i n=           (2.47) 

          

then 1 0i iω ω+ ≥ ≥ , 1, 2, , 1i n= − , and 
1

1
n

i
i

ω
=

= . 

          
(2) Let  

          
( )

( )

( ) ( )1 2

( ) ( )1 2

( ), ( )

( ), ( )

1

A i A i

A k A k

d h x h x

i n
d h x h x

k

e

e

σ σ

σ σ

ω
−

−

=

=


, 1, 2, ,i n=              (2.48) 

          

then 10 i iω ω+≤ ≤ , 1, 2, , 1i n= − , and 
1

1
n

i
i

ω
=

= . 

          
(3) Let  

          

      ( )
1 2 1 2( ) ( )

1

1
( , ) ( ), ( )

n

A A A k A k
k

d h h d h x h x
n σ σ

=
=              (2.49) 
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and  
          

( ) ( )( )1 2 1 2( ) ( )( ), ( ) , ,A i A i A Ad d h x h x d h hσ σ
    

( ) ( )
1 2 1 2( ) ( ) ( ) ( )

1

1
( ), ( ) ( ), ( )

n

A i A i A k A k
k

d h x h x d h x h x
nσ σ σ σ

=

= − 
   

 (2.50) 

          
then we define  

          

( ) ( )( )
( ) ( )( )( )

1 2 1 2

1 2 1 2

( ) ( )

( ) ( )
1

1 , , ( ), ( )

1 , , ( ), ( )

A A A i A i

i n

A A A i A i
k

d d h h d h x h x

d d h h d h x h x

σ σ

σ σ

ω

=

−
=

−

 

 
 

          

( ) ( )

( ) ( )
1 2 1 2

1 2 1 2

( ) ( ) ( ) ( )
1

( ) ( ) ( ) ( )
1 1

1
1 ( ), ( ) ( ), ( )

1
1 ( ), ( ) ( ), ( )

n

A i A i A k A k
k

n n

A i A i A k A k
k k

d h x h x d h x h x
n

d h x h x d h x h x
n

σ σ σ σ

σ σ σ σ

=

= =

− −
=

 
− − 

 



 
,  

          
1, 2, ,i n=                    (2.51) 

from which we get 0iω ≥ , 1, 2, ,i n=  , and 
1

1
n

i
i

ω
=

= . 

We find that the weight vector derived from the formula in (1) is a 
monotonically decreasing sequence, the weight vector derived from the formula in 
(2) is a monotonically increasing sequence, and the weight vector derived from the 
formula in (3) combines the above two cases, i.e., the closer the value 

( )
1 2( ) ( )( ), ( )A i A id h x h xσ σ  to the mean ( )

1 2( ) ( )
1

1
( ), ( )

n

A k A k
k

d h x h x
n σ σ

=
 , the 

more the weight iω . 

In Example 2.1, if the attribute weight vector is unknown, then we can use the 
ordered weighted distance measures to calculate the distance between each 
alternative and the ideal alternative. Without loss of generality, suppose that 

1d d=  in the formula in (1), we use the generalized hesitant ordered weighted 

distance measure 39 1 2( , )d A A  to calculate the distance between each alternative 

and the ideal alternative. The derived results are shown in Table 2.5 (Xu and Xia 
2011b) with the different values of the parameter λ .  
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Table 2.5. Results obtained by the generalized hesitant ordered weighted distance  

 1A  2A  3A  4A  5A  Rankings 

1λ =  0.5085 0.5132 0.4014 0.4565 0.3600 
5A  3A  4A  1A  2A  

2λ =  0.5584 0.5545 0.4327 0.5304 0.4222 
5A  3A  4A  2A  1A  

6λ =  0.6604 0.6561 0.5149 0.6863 0.5915 
3A  5A  2A  1A  4A  

10λ =  0.7160 0.7140 0.5639 0.7492 0.6771 
3A  5A  2A  1A  4A  

2.2   Distance and Correlation Measures for HFEs 

Consider that the number of values in different HFEs maybe different, let hl  be the 

number of values in a HFE h . We can also find that the values in the HFE are out 

of order, we can arrange them in any order. For the HFE h , let 

: (1,2, , )nσ → (1, 2, , )n  be a permutation satisfying ( ) ( 1)i ih hσ σ +≤ , 

1,2, , 1hi l= − , : (1, 2, , ) (1, 2, , )n nρ →   be a permutation satisfying 

( ) ( 1)i ih hρ ρ +≥ , 1,2, , 1hi l= −  and : (1, 2, , ) (1,2, , )n nς →   be any 

permutation of the values in h . To operator correctly, we suppose that two HFEs 

1h  and 2h  have the same length l , when we compare them, and 1 2h h=  if and 

only if ( ) ( )
1 2

i ih hσ σ= , for 1,2, ,i l=  . 
 

Definition 2.3 (Xu and Xia 2011c).  For two HFEs 1h  and 2h , the distance 

between 1h  and 2h , denoted as 1 2( , )d h h , should satisfy the following 

properties: 
 

(1) 1 20 ( , ) 1d h h≤ ≤ . 
 

(2) 1 2( , ) 0d h h =  if and only if 1 2h h= . 
 

(3) 1 2 2 1( , ) ( , )d h h d h h= . 
 

Based on Definition 2.3, we can give the following distance measures for 
HFEs: 
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(1) ( ) ( )
1 1 2 1 2

1

1
( , )

l
i i

i

d h h h h
l

σ σ

=

= − . 

 

(2) 
2( ) ( )

2 1 2 1 2
1

1
( , )

l
i i

i

d h h h h
l

σ σ

=

= − . 

 

(3) { }( ) ( )
3 1 2 1 2( , ) max i i

i
d h h h hσ σ= − . 

 

(4) { }2( ) ( )
4 1 2 1 2( , ) max i i

i
d h h h hσ σ= − . 

(5) { }( ) ( ) ( ) ( )
5 1 2 1 2 1 2

1

1 1
( , ) max

2

l
i i i i

i
i

d h h h h h h
l

σ σ σ σ

=

 = − + − 
 
 . 

 

(6) { }2( ) ( ) ( ) ( )
6 1 2 1 2 1 2

1

1 1
( , ) max

2

l
i i i i

i
i

d h h h h h h
l

σ σ σ σ

=

 
= − + −  

 
 . 

 
These distance measures are the extensions of the well-known distance 

measures (such as Hamming distance, Euclidean distance, and Hausdorff metric) 
for HFEs, and they have their own features which are discussed below: 

 
Lemma 2.1 (Xu and Xia 2011c).  Let 1 10 1a b≤ ≤ ≤  and 2 20 1a b≤ ≤ ≤ , 

then we have  
 

         1 2 1 2 1 2 2 1a a b b a b a b− + − ≤ − + −               (2.52) 
 

Proof.  We can distinguish six cases, according to the signs of 1 2a a− , 

1 2b b− , 1 2a b−  and 2 1a b− : 
 

Case 1. 1 1 2 2a b a b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −     
 

2 1 2 1 2 1 2 1( ) ( ) 0a a b b b a a b= − + − − − − − =            (2.53) 
 

Case 2.  1 2 1 2a a b b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −  
 

2 1 2 1 2 1 1 2 2 1( ) ( ) 2( ) 0a a b b b a b a a b= − + − − − − − = − ≤       (2.54) 
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Case 3.  2 1 1 2a a b b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −  
 

1 2 2 1 2 1 1 2 1 1( ) ( ) 2( ) 0a a b b b a b a a b= − + − − − − − = − ≤    (2.55) 
 

Case 4.  2 1 2 1a a b b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −  
 

1 2 1 2 2 1 1 2 1 2( ) ( ) 2( ) 0a a b b b a b a a b= − + − − − − − = − ≤  (2.56) 
 

Case 5.  2 2 1 1a b a b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −     
 

1 2 1 2 1 2 1 2( ) ( ) 0a a b b a b b a= − + − − − − − =          (2.57) 
 

Case 6.  1 2 2 1a a b b≤ ≤ ≤ . In this case, we have 
 

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −   
 

2 1 1 2 2 1 1 2 2 2( ) ( ) 2( ) 0a a b b b a b a a b= − + − − − − − = − ≤    (2.58)  
 

Lemma 2.2 (Xu and Xia 2011c).  Let 1 1a b≤  and 2 2a b≤ , then 

1 2 1 2a a b b+ ≥ 1 2 2 1a b a b+ .  
 

Proof.  Since 1 1a b≤  and 2 2a b≤ , then 
 

1 2 1 2 1 2 2 1 1 2 2 1 2 2 1 1 2 2( ) ( ) ( )( ) 0a a b b a b a b a a b b b a b a b a+ − − = − + − = − − ≥  (2.59)        
 

which completes the proof.      
 

Lemma 2.3 (Xu and Xia 2011c).  Let 1 1a b≤  and 2 2a b≤ , then  
 

 
2 2 2 2

1 2 1 2 1 2 2 1a a b b a b a b− + − ≤ − + −                (2.60)  
 

Proof. From Lemma 2.2, it follows that 
 

2 2 2 2

1 2 1 2 1 2 2 1a a b b a b a b− + − − − − −  
 

2 2 2 2 2 2
1 1 2 2 1 1 2 2 1 1 2 2( ) 2 ( ) ( ) 2 ( ) (( ) 2 ( ) )a a a a b b b b a a b b= − + + − + − − +  
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2 2
2 2 1 1(( ) 2 ( ) )a a b b− − +  

 

1 2 1 2 1 2 2 12 2 2 2 0a a b b a b a b= − − + + ≤                (2.61) 
 

which completes the proof of the lemma. 
 

Theorem 2.1 (Xu and Xia 2011c).  Let 1h  and 2h  be two HFEs, then 

 

(1) ( ) ( ) ( ) ( ) ( ) ( )
1 1 2 1 2 1 2 1 2

1 1 1

1 1 1
( , )

l l l
i i i i i i

i i i

d h h h h h h h h
l l l

σ σ ς ς σ ρ

= = =

= − ≤ − ≤ −   . 

 

(2) 
2 2 2( ) ( ) ( ) ( ) ( ) ( )

2 1 2 1 2 1 2 1 2
1 1 1

1 1 1
( , )

l l l
i i i i i i

i i i

d h h h h h h h h
l l l

σ σ ς ς σ ρ

= = =
= − ≤ − = −   . 

 

(3) { } { } { }( ) ( ) ( ) ( ) ( ) ( )
3 1 2 1 2 1 2 1 2( , ) max max maxi i i i i i

i i i
d h h h h h h h hσ σ ς ς σ ρ= − ≤ − ≤ − . 

 

(4) { } { } { }2 2 2( ) ( ) ( ) ( ) ( ) ( )
4 1 2 1 2 1 2 1 2( , ) max max maxi i i i i i

i i i
d h h h h h h h hσ σ ς ς σ ρ= − ≤ − ≤ − . 

 

(5) { }( ) ( ) ( ) ( )
5 1 2 1 2 1 2

1

1 1
( , ) max

2

l
i i i i

i
i

d h h h h h h
l

σ σ σ σ

=

 = − + − 
 
  

 

{ }( ) ( ) ( ) ( )
1 2 1 2

1

1 1
max

2

l
i i i i

i
i

h h h h
l

ς ς ς ς

=

 ≤ − + − 
 
   

 

{ }( ) ( ) ( ) ( )
1 2 1 2

1

1 1
max

2

l
i i i i

i
i

h h h h
l

σ ρ σ ρ

=

 ≤ − + − 
 
 . 

 

(6) { }2 2( ) ( ) ( ) ( )
6 1 2 1 2 1 2

1

1 1
( , ) max

2

l
i i i i

i
i

d h h h h h h
l

σ σ σ σ

=

 
= − + −  

 
  

 

{ }2 2( ) ( ) ( ) ( )
1 2 1 2

1

1 1
max

2

l
i i i i

i
i

h h h h
l

ς ς ς ς

=

 
≤ − + −  
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{ }2 2( ) ( ) ( ) ( )
1 2 1 2

1

1 1
max

2

l
i i i i

i
i

h h h h
l

ρ ρ ρ ρ

=

 
≤ − + −  

 
 . 

 
Proof. Here we only prove (1) and (2), the others can be obtained similarly. 

Suppose that : (1, 2, , ) (1, 2, , )n nπ →   is a permutation, such that 
 

( ) ( )
1 1

i jh hπ π≤ , ( ) ( )
2 2

i jh hπ π≤ , i j≤ , 1 2, ,i j k k≠ ; 1 2( ) ( )
1 1

k kh hπ π≥ , 1 2( ) ( )
2 2

k kh hπ π≤  

(2.62) 
  

and  
 

       ( ) ( ) ( ) ( )
1 2 1 2

1 1

1 1l l
i i i i

i i

h h h h
l l

π π ς ς

= =

− ≤ −             (2.63) 

 

        
2 2( ) ( ) ( ) ( )

1 2 1 2
1 1

1 1l l
i i i i

i i

h h h h
l l

π π ς ς

= =

− ≤ −           (2.64) 

 
Based on Lemmas 2.1 and 2.3, we have 

 

2 1 2 1

1 2

( ) ( ) ( ) ( )( ) ( )
1 2 1 2 1 2

1, ,

1 l
k k k ki i

i i t t

h h h h h h
l

π π π ππ π

= ≠

− + − + −  

 

1 1 2 2

1 2

( ) ( ) ( ) ( )( ) ( )
1 2 1 2 1 2

1, ,

1 l
k k k ki i

i i t t

h h h h h h
l

π π π ππ π

= ≠

≤ − + − + −   

 

( ) ( )
1 2

1

1 l
i i

i

h h
l

π π

=

= −                                         (2.65)  

 
and 

 

2 1 1 2

1 2

2 22 ( ) ( ) ( ) ( )( ) ( )
1 2 1 2 1 2

1, ,

1 l
k k k ki i

i i t t

h h h h h h
l

π π π ππ π

= ≠
− + − + −  

 

1 1 2 2

1 2

2 22 ( ) ( ) ( ) ( )( ) ( )
1 2 1 2 1 2

1, ,

1 l
k k k ki i

i i t t

h h h h h h
l

π π π ππ π

= ≠
≤ − + − + −         

 

2( ) ( )
1 2

1

1 l
i i

i

h h
l

π π

=

= −                                  (2.66) 

 

which conflicts with the assumption. With the same reason, we can prove the 
second part of (1).  
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Form Theorem 2.1, we can find that the distance measures 

1 2( , ) ( 1,2,id h h i =  ...,6)  are the smallest distance measures among the ones 

obtained while the orders of values in HFEs 1h  and 2h  change. 

In the following, we first introduce the concept of correlation coefficient for 
HFEs, and then give several correlation coefficient formulas and discuss their 
properties: 

 
Definition 2.4 (Xu and Xia 2011c).  For two HFEs 1h  and 2h , the correlation 

coefficient of 1h  and 2h , denoted as 1 2( , )c h h , should satisfy the following 

properties: 
 

(1) 1 2( , ) 1c h h ≤ . 
 

(2) If 1 2h h= , then 1 2( , ) 1c h h = . 
 

(3) 1 2 2 1( , ) ( , )c h h c h h= . 
 

Based on Definition 2.4, we can construct several correlation coefficients for 
HFEs: 

 

(1) 

( )

( ) ( )

( ) ( )
1 2

1
1 1 2 1

22 2( ) ( )
1 2

1 1

( , )

l
i i

i

l l
i i

i i

h h
c h h

h h

σ σ

σ σ

=

= =

=
 
 
 



 
. 

 

(2) 

( )

( ) ( )

( ) ( )
1 2

1
2 1 2

2 2( ) ( )
1 2

1 1

( , )

max ,

l
i i

i
l l

i i

i i

h h
c h h

h h

σ σ

σ σ

=

= =

=
 
 
 



 
. 

 

(3) 

( )( )( )

( ) ( )

( ) ( )
1 1 2 2

1
3 1 2 1

22 2( ) ( )
1 1 2 2

1 1

( , )

l
i i

i

l l
i i

i i

h h h h
c h h

h h h h

σ σ

σ σ

=

= =

− −
=
 − − 
 



 
,  

where ( )
1 1

1

1 l
i

i

h h
l

σ

=
= 

 

and ( )
2 2

1

1 l
i

i

h h
l

σ

=
=  . 
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(4) 

( )( )( )
( ) ( )

( ) ( )
1 1 2 2

1
4 1 2

2 2( ) ( )
1 1 2 2

1 1

( , )

max ,

l
i i

i
l l

i i

i i

h h h h
c h h

h h h h

σ σ

σ σ

=

= =

− −
=

 − − 
 



 
,  

where ( )
1 1

1

1 l
i

i

h h
l

σ

=
=  , ( )

2 2
1

1 l
i

i

h h
l

σ

=
=  . 

 

(5) 
min max

5 1 2 ( ) max
1

1
( , )

l

i
i

h h
c h h

l h hσ
=

 Δ + Δ=  + Δ 
 , where ( ) ( ) ( )

1 2
i i ih h hσ σ σΔ = − ,  

 

{ }min ( ) ( )
1 2min i i

i
h h hσ σΔ = − , { }max ( ) ( )

1 2max i i

i
h h hσ σΔ = − . 

  
Although all these five formulas satisfy the properties in Definition 2.4, each of 

them has its own characterization. In the following, we shall discuss this issue 
point by point. 

 
Theorem 2.2 (Xu and Xia 2011c).  Let 1h  and 2h  be two HFEs, then 

 

(1) 
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1 2 1 2

1 1
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2 22 2 2 2( ) ( ) ( ) ( )
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c h h
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=

= =

≤ =
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(2) 
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1 2 1 2

1 1
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σ ρ ς ς
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= = = =

≤
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1
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( , )
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l
i i

i
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σ σ

σ σ
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= =

≤ =
 
 
 



 
. 
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Proof. Here we only prove (1), (2) can be proven similarly. 

Suppose that : (1, 2, , ) (1, 2, , )n nπ →   is a permutation satisfying  
 

( ) ( )
1 1

i jh hπ π≤ , ( ) ( )
2 2

i jh hπ π≤ , i j≤ , 1 2, ,i j k k≠ ; 1 2( ) ( )
1 1

k kh hπ π≥ , 1 2( ) ( )
2 2

k kh hπ π≤    

                       (2.67)  
 

and 
 

      

( )

( ) ( )

( )

( ) ( )

( ) ( ) ( ) ( )
1 2 1 2

1 1
1 1

2 22 2 2 2( ) ( ) ( ) ( )
1 2 1 2

1 1 1 1

l l
i i i i

i i

l l l l
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By Lemma 2.2, we have  

 
    1 1 2 2 2 1 1 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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            (2.70)  

 
which is inconsistent with the assumption. With the same reason, we can prove the 
second part of (1). 

From Theorem 2.2, we can find that no matter how the orders of the values in 

HFEs 1h  and 2h  change, 1c  and 2c  have the highest correlation 

coefficients. 
 

Theorem 2.3 (Xu and Xia, 2011b).  Let 1h  and 2h  be two HFEs, then 
 

(1) 2 1 2 1 1 2( , ) ( , )c h h c h h≤ . 
 

(2) 4 1 2 3 1 2( , ) ( , )c h h c h h≤ . 
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Proof.  (1) Since  
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then 

 

( )

( ) ( )

( ) ( )
1 2

1
2 1 2

2 2( ) ( )
1 2

1 1

( , )

max ,

l
i i

i
l l

i i

i i

h h
c h h

h h

σ σ

σ σ

=

= =

=
 
 
 



 
   

 

( ) ( )

( ) ( )
1 2

1
1 1 2 1

22 2( ) ( )
1 2

1 1

( , )

l
i i

i

l l
i i

i i

h h
c h h

h h

σ σ

σ σ

=

= =

≤ =
 
 
 



 
             (2.72)  

    
(2) Since  
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and if ( )( )( )( ) ( )
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         (2.75) 

    
Therefore, 4 1 2 3 1 2( , ) ( , )c h h c h h≤ . 

Theorem 2.3 tells us that: (1) 2c  is always smaller than 1c , but both of them 

are bigger than 0 ; (2) The absolute value of 4c  is always smaller than that of 

3c , and their values may be smaller or bigger than 0 , which not only provides us 

the strength of the relationship of HFEs, but also shows that the HFEs are positively 
or negatively correlated. 

    
Theorem 2.4 (Xu and Xia 2011c).  Let 1h  and 2h  be two HFEs, then 

    
(1) If ( ) ( )

2 10 1i ih khσ σ≤ = ≤ , then 1 1 2 3 1 2( , ) ( , ) 1c h h c h h= =  and  
            

{ } { }
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( , )
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l i
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i
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 +
 =  + 
 

                (2.76) 

(2) Let ( ) ( )
2 10 1i ih khσ σ≤ = ≤ . If 1k ≥ , then 2 1 2 4 1 2

1
( , ) ( , )c h h c h h

k
= = ; If 

0 1k< ≤ , then 2 1 2 4 1 2( , ) ( , )c h h c h h k= = . 

(3) If ( ) ( )
1 2

i ih h dσ σ− = , then 5 1 2( , ) 1c h h = . 
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Proof.  (1) If ( ) ( )

2 10 1i ih khσ σ≤ = ≤ , 0k > , then 
    

( )

( ) ( )

( )

( )

2( ) ( ) ( )
1 2 1

1 1
1 1 2 1 2 22 2 ( )( ) ( )

11 2
11 1

( , ) 1

l l
i i i

i i
ll l ii i

ii i

h h k h
c h h

k hh h

σ σ σ

σσ σ

= =

== =

= = =
 
 
 

 

 
     (2.77) 

    

( )( )( )

( ) ( )

( )( )
( )( )

2( ) ( ) ( )
1 1 2 2 1 1

1 1
3 1 2 1 2 22 2 ( )( ) ( )

1 11 1 2 2
11 1

( , ) 1

l l
i i i

i i
ll l ii i

ii i

h h h h k h h
c h h

k h hh h h h

σ σ σ

σσ σ

= =

== =

− − −
= = =
  −− − 
 

 

 
  

(2.78) 
    

and 
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If 0 1k< ≤ , then 
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(3) If ( ) ( )
1 2

i ih h dσ σ− = , then  
       

{ }( ) ( ) ( ) min ( ) ( )
1 2mini i i i i

i
h h h h h hσ σ σ σ σΔ = − = Δ = −    

       

{ }max ( ) ( )
1 2max i i

i
h h h dσ σ= Δ = − =                 (2.87) 

       
and 

       

     ( )
min max

5 1 2 ( ) max
1

1
, 1

l

i
i

h h
c h h

l h hσ
=

 Δ + Δ= = + Δ 
               (2.88) 

       
From Theorem 2.4, we can conclude that:  

       
(1) If the values of ( )

2
ihσ  in h  are k  times the values of ( )

1
ihσ  in 1h , then 

the correlation coefficients 1c  and 3c  are 1, 2c  and 4c  are 
1

k
( 1k ≥ ) or 

k ( 0 1k< ≤ ). 
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(2) If ( ) ( )
1 2

i ih h dσ σ− = , then 5 1 2( , ) 1c h h = .  
       

This indicates that these five correlation coefficient formulas reflect different 

linear relationships between two HFEs 1h  and 2h , and therefore, they may 

produce different results for the same two HFEs, which is reasonable. 
In what follows, we use an example to illustrate the developed correlation 

coefficient formulas: 

Example 2.3. (Szmidt and Kacprzyk 2004) To make a proper diagnosis 
{Viral fever, Malaria,Typhoid, Stomach problem, Chest problem}A =  for a  

patient with the given values of the symptoms, {Temperature,X =  

headache,  cough,  stomach pain, chest pain} , a medical knowledge base is 

necessary that involves elements described in terms of HFSs. The data are given in 
Table 2.6 (Xu and Xia 2011c), and each symptom is described by a HFE). The set 
of patients is {Al,  Bob, Joe,  Ted}P = . The symptoms are given in Table 2.7  

(Xu and Xia 2011c). We need to seek a diagnosis for each patient. 

Table 2.6. Symptoms characteristic for the considered diagnoses 

 Temperature Headache Cough Stomach pain Chest pain 

Viral fever  (0.6,0.4,0.3) (0.7,0.5,0.3,0.2) (0.5,0.3) (0.5,0.4,0.3,0.2,0.1) (0.5,0.4,0.2,0.1) 

Malaria  (0.9,0.8,0.7) (0.5,0.3,0.2,0.1) (0.2,0.1) (0.6,0.5,0.3,0.2,0.1) (0.4,0.3,0.2,0.1) 

Typhoid  (0.6,0.3,0.1) (0.9,0.8,0.7,0.6) (0.5,0.3) (0.5,0.4,0.3,0.2,0.1) (0.6,0.4,0.3,0.1) 

Stomach problem (0.5,0.4,0.2) (0.4,0.3,0.2,0.1) (0.4,0.3) (0.9,0.8,0.7,0.6,0.5) (0.5,0.4,0.2,0.1) 

Chest Problem  (0.3,0.2,0.1) (0.5,0.3,0.2,0.1) (0.3,0.2) (0.7,0.6,0.5,0.3,0.2) (0.9,0.8,0.7,0.6) 

Table 2.7. Symptoms characteristic for the considered patients 

 Temperature Headache Cough Stomach pain  Chest pain 

Al (0.9,0.7,0.5) (0.4,0.3,0.2,0.1) (0.4,0.3)  (0.6,0.5,0.4,0.2,0.1) (0.4,0.3,0.2,0.1) 

Bob (0.5,0.4,0.2) (0.5,0.4,0.3,0.1) (0.2,0.1) (0.9,0.8,0.6,0.5,0.4) (0.5,0.4,0.3,0.2) 

Joe (0.9,0.7,0.6) (0.7,0.4,0.3,0.1) (0.3,0.2)  (0.6,0.4,0.3,0.2,0.1) (0.6,0.3,0.2,0.1) 

Ted (0.8,0.7,0.5) (0.6,0.5,0.4,0.2) (0.4,0.3) (0.6,0.4,0.3,0.2,0.1) (0.5,0.4,0.2,0.1) 

We utilize the correlation coefficient 1c  to derive a diagnosis for each patient. 

All the results for the considered patients are listed in Table 2.8 (Xu and Xia 
2011c). From the arguments in Table 2.8, we can find that A1 and Ted suffer from 
Viral fever, Bob from stomach problem, and Joe from Malaria. 
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Table 2.8. The values of 1c  for each patient to the considered set of possible diagnoses 

 Viral fever Malaria Typhoid Stomach problem Chest Problem 

Al 0.9969 0.9929 0.9800 0.9902 0.9878 

Bob 0.9900 0.9862 0.9792 0.9921 0.9909 

Joe 0.9927 0.9929 0.9677 0.9817 0.9750 

Ted 0.9942 0.9899 0.9787 0.9879 0.9772 
 

If we utilize the correlation coefficient formulas 2c , 3c , 4c  and 5c  to 

derive a diagnosis, then the results are listed in Tables 2.9-2.12, respectively.  

Table 2.9. The values of 2c  for each patient to the considered set of possible diagnoses 

 Viral fever Malaria Typhoid Stomach problem Chest Problem 

Al 0.7373 0.8299 0.6564 0.7770 0.6099 

Bob 0.6784 0.7280 0.6403 0.8083 0.6501 

Joe 0.7977 0.7903 0.6864 0.6570 0.6306 

Ted 0.8751 0.7394 0.7471 0.7313 0.5712 

Table 2.10. The values of 3c  for each patient to the considered set of possible diagnoses 

 Viral fever Malaria Typhoid Stomach problem Chest Problem 

Al 0.9906 0.9919 0.9954 0.9926 0.9965 

Bob 0.9712 0.9850 0.9840 0.9928 0.9803 

Joe 0.9786 0.9823 0.9857 0.9652 0.9798 

Ted 0.9723 0.9785 0.9775 0.9938 0.9760 
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Table 2.11. The values of 4c  for each patient to the considered set of possible diagnoses 

 Viral fever Malaria Typhoid Stomach problem Chest Problem 

Al 0.6564 0.8439 0.7321 0.8412 0.8486 

Bob 0.7226 0.9172 0.6386 0.8397 0.9125 

Joe 0.7926 0.7603 0.6703 0.8064 0.7579 

Ted 0.7936 0.8386 0.6958 0.9107 0.8362 

Table 2.12. The values of 5c  for each patient to the considered set of possible diagnoses 

 Viral fever Malaria Typhoid Stomach problem Chest Problem 

Al 0.7911 0.8994 0.7150 0.9317 0.9578 

Bob 0.7983 0.9433 0.9183 0.8150 0.8767 

Joe 0.8550 0.8300 0.8470 0.8633 0.8861 

Ted 0.8689 0.8883 0.8404 0.9425 0.9317 

 
From Tables 2.9-2.12, we know that the results obtained by different 

correlation coefficient formulas are different. That is because these correlation 
coefficient formulas are based on different linear relationships, and may produce 
different results, which has been mentioned in the existing literature (Merigó and 
Casanovas 2009; Chen and Li 2010). 

2.3   Hesitant Fuzzy Entropy and Cross-Entropy and Their Use 
in MADM 

In the following, we first introduce the axiomatic definition of entropy for HFEs: 
       

Definition 2.5 (Xu and Xia 2012a). An entropy on a HFE h  is a real-valued 
function E : [0,1]H → , satisfying the following axiomatic requirements: 

       
(1) ( ) 0E h = , if and only if {0}h =  or {1}h = . 
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(2) ( ) 1E h = , if and only if ( ) ( 1) 1
hi l ih hσ σ − ++ =  for 1,2, , hi l=  . 
       

(3) 1 2( ) ( )E h E h≤ , if ( ) ( )
1 2

i ih hσ σ≤  for ( ) ( 1)
2 2 1i l ih hσ σ − ++ ≤  or ( ) ( )

1 2
i ih hσ σ≥  

for ( ) ( 1)
2 2 1i l ih hσ σ − ++ ≥ , 1,2, ,i l=  . 

       

(4) ( )( ) cE h E h= . 
       

Motivated by the entropy measures for fuzzy sets (Fan 2002; Parkash et al. 
2008), we can construct some entropy formulas based on Definition 2.5 as follows: 

       

( )
( ) ( )( 1) ( 1)( ) ( )

1
1

21
( ) sin sin 1

4 42 1

h hh
l i l ii il

ih

h h h h
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  (2.89)  
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ih

h h h h
E h

l

σ σσ σπ π− + − +

=

 + − −
 = + −
 −  

  (2.90)  

       
( 1) ( 1)( ) ( )

3
1
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h h h h
E h

l
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( 1) ( 1)( ) ( )2 2
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2 2

h hl i l ii ih h h hσ σσ σ− + − + − + − ++ 


         (2.91) 

       

( )
2

1 1

1 2
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1
( ) 1 1

2 22 1
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    + +  = + − −     −      
 ,  

2 0λ ≠ , 1 1λ ≠ , 1 0λ >                       (2.92) 
       

Moreover, with the change of the parameters in 4E , some special cases can be 

obtained (Xu and Xia 2012a): 
       

If 2 1λ = , then  
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1 1

1

( 1) ( 1)( ) ( )

4 1
1

1
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If 2
1

1λ
λ

= , then  
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( ) ( )1 1 1

1

1

1

1 1( ) ( )
1

4 1
1
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2 1

h hh l i l il i i
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 (2.94)  

       
Xu and Xia (2011b) gave the hesitant fuzzy similarity measure defined as: 

       
Definition 2.6 (Xu and Xia 2011c).  For two HFEs 1h  and 2h , the similarity 

measure between 1h  and 2h , denoted as 1 2( , )s h h , should satisfy the 

following properties: 
       

(1) 1 2( , ) 0s h h =  if and only if 1 {0}h = , 2 {1}h =  or 1 {1}h = , 2 {0}h = . 
       

(2) 1 2( , ) 1s h h =  if and only if ( ) ( )
1 2

i ih hσ σ= , 1,2, ,i l=  . 
       

(3) 1 3 1 2( , ) (( , )s h h s h h≤ , 1 3 2 3( , ) ( , )s h h s h h≤ , if ( ) ( ) ( )
1 2 3

i i ih h hσ σ σ≤ ≤  or 
( ) ( ) ( )

1 2 3
i i ih h hσ σ σ≥ ≥ , 1,2, ,i l=  . 

       
(4) 1 2 2 1( , ) ( , )s h h s h h= . 

       
Based on Definition 2.6, some hesitant fuzzy similarity measures can be 

constructed as (Xu and Xia 2011c): 
       

                ( ) ( )
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                  { }( ) ( )
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i
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5 1 2 1 2( , ) max i i

i
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                  { }( ) ( )
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i
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9 1 2 1 2 1 2

1

1 1
( , ) 1 max

2

l
i i i i

i
i

s h h h h h h
l

λ λσ σ σ σλ

=

 
= − − + −  

 
  (2.103) 

where 0λ > . 

By analyzing these similarity measures, we can find that 1 1 2( , )s h h  and 

2 1 2( , )s h h  are based on Hamming distance and Euclidean distance; 4 1 2( , )s h h  

and 5 1 2( , )s h h  apply Hausdorff metric to 1 1 2( , )s h h  and 2 1 2( , )s h h ; 

7 1 2( , )s h h  combines 1 1 2( , )s h h  with 4 1 2( , )s h h ; 8 1 2( , )s h h  combines 

2 1 2( , )s h h  with 5 1 2( , )s h h ; 3 1 2( , )s h h , 6 1 2( , )s h h  and 9 1 2( , )s h h  are 

further generalizations of 1 1 2( , )s h h  and 2 1 2( , )s h h , 4 1 2( , )s h h  and 

5 1 2( , )s h h , 7 1 2( , )s h h  and 8 1 2( , )s h h , respectively; When 1λ = , then 

3 1 2( , )s h h  becomes 1 1 2( , )s h h , 6 1 2( , )s h h  becomes 4 1 2( , )s h h , and 

9 1 2( , )s h h  becomes 7 1 2( , )s h h ; When 2λ = , then 3 1 2( , )s h h  reduces to 

2 1 2( , )s h h , 6 1 2( , )s h h  reduces to 5 1 2( , )s h h , and 9 1 2( , )s h h  reduces to 

8 1 2( , )s h h . 
Many authors have investigated the relationships between similarity measures 

and entropy formulas under different environments, such as interval-valued fuzzy 
sets (Zeng and Guo 2008; Zeng and Li 2006), interval-valued intuitionistic fuzzy 
sets (Zhang et al. 2009; Zhang et al. 2010). In what follows, we discuss the 
relationships between hesitant fuzzy similarity measures and hesitant fuzzy 
entropy formulas: 

       

Theorem 2.5 (Xu and Xia 2012a).  Let h  be a HFE, then ( ), )cs h h  is the 

entropy of h . 
       

Proof. (1) ( ), 0cs h h = ⇔ {0}h =  and {1}ch =  or {0}ch =  and 

{1}h = . 
       

(2) ( ), 1cs h h = ⇔ ch h= ⇔ ( 1)( ) 1hl iih hσσ − ++ = , for 1,2, , hi l=  . 
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(3) Suppose that ( ) ( )
1 2

i ih hσ σ≤ , for ( 1)( )
2 2 1hl iih hσσ − ++ ≤ , 1,2, , ,i l=   then 

( 1) ( 1)( ) ( )
1 2 2 11 1h hl i l ii ih h h hσ σσ σ − + − +≤ ≤ − ≤ − . Therefore, known by the definition 

of the similarity measure of HFE, we have 1 1 2 1 2 2( , ) ( , ) ( , )c c cs h h s h h s h h≤ ≤ . 

With the same reason, we can prove it when ( ) ( )
1 2

i ih hσ σ≥  for 
( 1)( )

2 2 1hl iih hσσ − ++ ≥ , 1,2, ,i l=  . 

(4) ( , ) ( , )c cs h h s h h= . 
       

Example 2.4  (Xu and Xia 2012a).  For two HFEs 1h  and 2h , 0λ > , we 

can construct the following entropy formulas based on the similarity measures 
(2.95)-(2.103): 

       

( 1)( )
1

1

1
( , ) 1 1

h

h

l
l ic i

ih

s h h h h
l

σσ − +

=

= − + −                (2.104) 

          

       
2( 1)( )

2
1

1
( , ) 1 1

h

h

l
l ic i

ih

s h h h h
l

σσ − +

=

= − + −              (2.105) 

       

     ( 1)( )
3

1

1
( , ) 1 1

h

h

l
l ic i

ih

s h h h h
l

λσσλ − +

=

= − + −              (2.106) 

       

    { }( 1)( )
4 ( , ) max 1hl ic i

i
s h h h hσσ − += + −                 (2.107) 

       

        { }2( 1)( )
5 ( , ) max 1hl ic i

i
s h h h hσσ − += + −                (2.108) 

       

      { }( 1)( )
6 ( , ) max 1hl ic i

i
s h h h h

λσσ − += + −                (2.109) 

       

( 1)( )
7

1

1 1
( , ) 1 1

2

h

h

l
l ic i

ih

s h h h h
l

σσ − +

=


= − + − +


 { })( 1)( )max 1hl ii

i
h hσσ − ++ −  

                                                          (2.110) 

{ })2 2( 1) ( 1)( ) ( )
8

1

1 1
( , ) 1 1 max 1

2

h

h h

l
l i l ic i i

i
ih

s h h h h h h
l

σ σσ σ− + − +

=


= − + − + + −




  

                                                            (2.111) 
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( 1)( )
9

1

1 1
( , ) 1 1

2

h

h

l
l ic i

ih

s h h h h
l

λσσλ − +

=


= − + − +


 { })( 1)( )max 1hl ii

i
h h

λσσ − ++ −  

                                                             (2.112) 
       

In this paper, we let 
2
hl 

  
 denote the largest integer no bigger than 

2
hl , and 

2
hl

−−−−

 
  

 denote the smallest integer no smaller than 
2
hl , then we get the following 

theorem: 
       

Theorem 2.6 (Xu and Xia 2012a). For a HFE h , let 
2

(1) (2)
1 { , , , }

hl

H h h h
σ

σ σ

−−−− 
  
    
 =   

and 

1
2

( ) ( 1)
2 {1 ,1 , ,1 }

h

h h

l

l lH h h h
σ

σ σ

−−−− 
  +    −  = − − − , then ( )1 2,s H H  is the 

entropy of h . 
       

Proof. (1) ( )1 2, 0s H H = ⇔ 1 {0}H = , 2 {1}H =  or 1 {1}H = , 

2 {0}H =  ⇔ {0}h =  or {1}h = . 
       

(2) ( )1 2, 1s H H = ⇔ 1 2H H= , for 1,2, , hi l=  . 
       

(3) Assume ( ) ( )
1 2

i ih hσ σ≤  for ( 1)( )
2 2 1hl iih hσσ − ++ ≤ , 1,2, , hi l=  , then we 

have  
       

           ( 1) ( 1)( ) ( )
1 2 2 11 1h hl i l ii ih h h hσ σσ σ − + − +≤ ≤ − ≤ −           (2.113) 

       
Therefore, known by the definition of the similarity measure of HFEs, we have  

       

( ) ( ) ( )( 1) ( 1) ( 1)( ) ( ) ( )
1 1 2 1 2 2,1 ,1 ,1h h hl i l i l ii i is h h s h h s h hσ σ σσ σ σ− + − + − +− ≤ − ≤ −  (2.114) 

       
Similarly, we can prove it is also true that ( ) ( )

1 2
i ih hσ σ≥ , for 

( ) ( 1)
2 2 1i l ih hσ σ − ++ ≥ , 1,2, , hi l=  . 

       
(4) ( ) ( )1 2 2 1, ,s H H s H H= . 

       
Example 2.5 (Xu and Xia 2012a). For a HFE h , we can construct the following 
entropy formulas based on the similarity measures (2.95)-(2.103): 
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   ( )
2

( 1)( )
1 1 2

1

2
, 1 1

h

h

l

l ii

ih

s H H h h
l

σσ

−−−−−
 −−−−−
  

− +

=

 
= − + − 

 
             (2.115) 

       

     ( )
2

2( 1)( )
2 1 2

1

2
, 1 1

h

h

l

l ii

ih

s H H h h
l

σσ

−−−−−
 −−−−−
  

− +

=

 
= − + − 

 
           (2.116) 

       

    ( )
2

( 1)( )
3 1 2

1

2
, 1 1

h

h

l

l ii

ih

s H H h h
l

λλ σσ

−−−−−
 −−−−−
  

− +

=

 
= − + − 

 
          (2.117) 

       

       ( ) { }( 1)( )
4 1 2, max 1hl ii

i
s H H h hσσ − += + −              (2.118) 

       

         ( ) { }2( 1)( )
5 1 2, max 1hl ii

i
s H H h hσσ − += + −             (2.119) 

       

       ( ) { }( 1)( )
6 1 2, max 1hl ii

i
s H H h h

λσσ − += + −             (2.120) 

       

( ) { }
2

( 1) ( 1)( ) ( )
7 1 2

1

1
, 1 1 max 1

h

h h

l

l i l ii i

i
ih

s H H h h h h
l

σ σσ σ

−−−−−
 −−−−−
  

− + − +

=

 
  
 = − + − + + − 
  
 
 

  

                                                            (2.121) 
       

( ) { }2
2 2( 1) ( 1)( ) ( )

8 1 2
1

1
, 1 1 max 1

h

h h

l

l i l ii i

i
ih

s H H h h h h
l

σ σσ σ

−−−−−
 −−−−−
  

− + − +

=

 
    = − + − + + −      
 

  

                                                              (2.122) 
       

( ) { }2
( 1) ( 1)( ) ( )

9 1 2
1

1
, 1 1 max 1

h

h h

l

l i l ii i

i
ih

s H H h h h h
l

λ λλ σ σσ σ

−−−−−
 −−−−−
  

− + − +

=

 
    = − + − + + −      
 

  

                                                               (2.123) 
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For two HFEs 1h  and 2h , suppose that ( ) ( )
1 2| |i ih hσ σ− < ( 1) ( 1)

1 2| |i ih hσ σ+ +− , 

1, 2, , 1i l= − , and 
       

(1) (1) (2) (2) ( ) ( )
1 2 1 2 1 2

1 2

| | 1 | | 1 | | 1
( , ) , , ,

2 2 2

l lh h h h h h
f h h

σ σ σ σ σ σ − + − + − +=  
 

 (2.124) 

       
then we have the following theorem: 

       
Theorem 2.7 (Xu and Xia 2012a).  Let 1h  and 2h  be two HFEs, and E  the 

entropy of a HFE, then ( )1 2( , )E f h h  is the similarity measure of the HFEs 1h  

and 2h . 
       

Proof. (1) 1 2( ( , )) 0E f h h = ⇔ 1 2( , ) 1f h h =  or 1 2( , ) 0f h h = ⇔ 1 {0}h = , 

2 {1}h =  or 1 {1}h = , 2 {0}h = . 
       

(2) 
1 2( ( , )) 1E f h h = ⇔

( ) ( ) ( 1) ( 1)
1 2 1 2| | 1 | | 1

1
2 2

i i i ih h h hσ σ σ σ+ +− + − ++ = ⇔
1 2h h= . 

       
(3) Suppose that three HFEs 1h , 2h  and 3h  have the same length l . Since 

( ) ( ) ( )
1 2 3

i i ih h hσ σ σ≤ ≤ , 1, 2, ,i l=  , then we can obtain        
       

       
( ) ( ) ( ) ( )

1 3 1 2| | 1 | | 1

2 2

i i i ih h h hσ σ σ σ− + − +≥ , 1, 2, ,i l=       (2.125) 

       
which implies 1 3 1 2( , ) ( , )f h h f h h≥ . From the definition of 1 2( , )f h h , we 

know that  
       

    ( ) ( )( ) ( 1)

1 2 1 2( , ) ( , ) 1
i l i

f h h f h h
σ σ − ++ ≥ , 1, 2, ,i l=        (2.126) 

       
thus ( ) ( )1 3 1 2( , ) ( , )E f h h E f h h≤ . With the same reason, we can prove it is 

also true for ( ) ( ) ( )
1 2 3

i i ih h hσ σ σ≥ ≥ , 1, 2, ,i l=  . 
       

(4) ( ) ( )1 2 2 1( , ) ( , )E f h h E f h h= . 
       

Example 2.6 (Xu and Xia 2012a).  For two HFEs 1h  and 2h , we have 
       

( )1 1 2( , )E f h h
( )

( )( ) ( ) ( 1) ( 1)
1 2 1 2

1

21
sin

82 1

i i l i l i
l

i

h h h h

l

σ σ σ σπ − + − +

=

 + − + −
=
− 
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( )( ) ( ) ( 1) ( 1)
1 2 1 22

sin 1
8

i i l i l ih h h hσ σ σ σπ − + − + − − − −
+ −



       (2.127)  

       

( )2 1 2( , )E f h h
( )

( )( ) ( ) ( 1) ( 1)
1 2 1 2

1

21
cos

82 1

i i l i l i
l

i

h h h h

l

σ σ σ σπ − + − +

=

 + − + −
=
− 

   

       

( )( ) ( ) ( 1) ( 1)
1 2 1 22

cos 1
8

i i l i l ih h h hσ σ σ σπ − + − + − − − −
+ −



         (2.128)  

       

( )3 1 2( , )E f h h
( ) ( ) ( 1) ( 1)

1 2 1 2

1

21

ln 2 4

i i l i l il

i

h h h h

l

σ σ σ σ− + − +

=

 + − + −
= −



  

( ) ( ) ( 1) ( 1)
1 2 1 22

ln
4

i i l i l ih h h hσ σ σ σ− + − ++ − + −
×  

( ) ( ) ( 1) ( 1)
1 2 1 22

4

i i l i l ih h h hσ σ σ σ− + − +− − − −
−  

 
( ) ( ) ( 1) ( 1)

1 2 1 22
ln

4

i i l i l ih h h hσ σ σ σ− + − + − − − −
×



       (2.129)  

( )4 1 2( , )E f h h
 

          ( )
1

1 2

( ) ( ) ( 1) ( 1)
1 2 1 2

(1 )
1

21

42 1

i i l i l il

i

h h h h

l

λσ σ σ σ

λ λ

− + − +

−
=

  + − + −  = −   −   
  

       
2

1( ) ( ) ( 1) ( 1)
1 2 1 22

1
4

i i l i l ih h h h
λλσ σ σ σ− + − +  − − − −  + −      

, 2 0λ ≠ , 1 1λ ≠ , 1 0λ >
 

 (2.130)  

Corollary 2.1 (Xu and Xia 2012a).  Let 1h  and 2h  be two HFEs, and E  the 

entropy of HFE, then ( )( )1 2( , )
c

E f h h  is the similarity measure of HFEs 

1h  and 2h . 
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For two HFEs 1h  and 2h , suppose that  
       

  ( ) ( )
1 2

i ih hσ σ− ( 1) ( 1)
1 2

i ih hσ σ+ +< − , 1, 2, , 1i l= −   (2.131)  

       
then we define 

       
(1) (1) (2) (2) ( ) ( )

1 2 1 2 1 2

1 2

1 1 1
( , ) , , ,

2 2 2

l lh h h h h h
g h h

λ λ λσ σ σ σ σ σ − + − + − + =  
  

 , 0λ >       

 (2.132) 
       

from which we get 
       

Corollary 2.2 (Xu and Xia 2012a).  Let 1h  and 2h  be two HFEs, and E  the 

entropy of HFE, then 1 2( ( , ))E g h h  is the similarity measure of HFEs 1h   

and 2h . 

For a HFE h , suppose that  
       

( ) ( 1) ( 1) ( )1 1i l i i l ih h h hσ σ σ σ− + + −+ − < + − , 1, 2, ,
2
hli

 =   
      (2.133) 

       
we define two HFEs ˆ ( )m h  and ˆ( )n h : 

       

1
2 2( ) ( 1)(1) (2)1 1 1 1 1 | 1|

ˆ ( ) , , ,
2 2 2

h h
h

h h

l l
l

l lh h h h h h
m h

σ σ
σ σσ σ

−−−−−− −−−−−−   
      − +            −    

 
 

+ + − + + − + + − =  
 
 
 

   

 (2.134)   
       

1
2 2( ) ( 1)(1) (2)1 1 1 1 1 | 1|

ˆ( ) , , ,
2 2 2

h h
h

h h

l l
l

l lh h h h h h
n h

σ σ
σ σσ σ

−−−−−− −−−−−−   
      − +            −    

 
 

− + − − + − − + − =  
 
 
 

  

       (2.135)   
then we have the following theorem: 

       
Theorem 2.8 (Xu and Xia 2012a).  Suppose that s  is the similarity measure for 

HFEs, then ( )ˆ ˆ( ), ( )s m h n h  is the entropy of the HFE h .  
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Proof. (1) ( )ˆ ˆ( ), ( ) 0s m h n h = ⇔ ˆ ( ) {1}m h =  and ˆ( ) {0}n h =  or 

ˆ ( ) {0}m h =  and ˆ( ) {1}n h = ⇔ {1}h =  or {0}h = . 
       

(2) ( )ˆ ˆ( ), ( ) 1s m h n h = ⇔
( 1)( ) ( 1)( )1 1 1 | 1 |

2 2

h h
l ii l iih h h h

σσ σσ− + − ++ + − − + −=  

       

⇔ ( 1)( ) 1hl iih hσσ − ++ = , 1, 2, ,
2
hli

−−−−−

 =   
  

       
⇔ ( 1)( ) 1hl iih hσσ − ++ = ,  for 1,2, , hi l=  . 

       
(3) Since ( ) ( )

1 2
i ih hσ σ≤  for ( ) ( 1)

2 2 1i l ih hσ σ − ++ ≤ , 1, 2, ,i l=   which implies  
       

       ( ) ( ) ( 1) ( 1)
1 2 2 11 1i i l i l ih h h hσ σ σ σ− + − +≤ ≤ − ≤ −              (2.136) 

       
we have  

       

   ( ) ( 1) ( ) ( 1)
1 1 2 21 1i l i i l ih h h hσ σ σ σ− + − ++ − ≥ + − , 1, 2, ,i l=       (2.137) 

       
which means that  

       

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 2 2 1ˆ ˆ ˆ ˆi i i in h n h m h m hσ σ σ σ⊆ ⊆ ⊆ , 1, 2, ,i l=    (2.138) 

       
Therefore, from the definition of the similarity measure of HFE, we have  

       

( ) ( ) ( )1 1 2 1 2 2ˆ ˆ ˆ ˆ ˆ ˆ( ), ( ) ( ), ( ) ( ), ( )s m h n h s m h n h s m h n h≤ ≤   (2.139) 
       

With the same reason, when ( ) ( )
1 2

i ih hσ σ≥  for ( ) ( 1)
2 2 1i l ih hσ σ − ++ ≥ , 

1, 2, ,i l=  , we can also prove ( ) ( )1 1 2 2ˆ ˆ ˆ ˆ( ), ( ) ( ), ( )s m h n h s m h n h≤ . 
       

(4) ( ) ( )ˆ ˆ ˆ ˆ( ), ( ) ( ), ( )c cs m h n h s m h n h= . 
       

Corollary 2.3 (Xu and Xia 2012a).  Suppose that s  is a similarity measure for 

HFEs, then ( )ˆ ˆ( ( )) , ( ( ))c cs m h n h  is the entropy of the HFE h .  
       

Example 2.7 (Xu and Xia 2012a).  Let 1h  and 2h  be two HFEs, we have 
       

( ) ( )1 1 1 2ˆ ˆ( ), ( ) ,s m h n h s H H= , ( ) ( )2 2 1 2ˆ ˆ( ), ( ) ,s m h n h s H H=   
       

( ) ( )3 3 1 2ˆ ˆ( ), ( ) ,s m h n h s H H= , ( ) ( )4 4 1 2ˆ ˆ( ), ( ) ,s m h n h s H H=   
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( ) ( )5 5 1 2ˆ ˆ( ), ( ) ,s m h n h s H H= , ( ) ( )6 6 1 2ˆ ˆ( ), ( ) ,s m h n h s H H=  
       

( ) ( )7 7 1 2ˆ ˆ( ), ( ) ,s m h n h s H H= , ( ) ( )8 8 1 2ˆ ˆ( ), ( ) ,s m h n h s H H=   
        

                    ( ) ( )9 9 1 2ˆ ˆ( ), ( ) ,s m h n h s H H=                  (2.140) 
       

Xu and Xia (2012a) introduced the axiomatic definition of cross-entropy 
measure for HFEs motivated by Shang and Jiang (1997), Vlachos and Sergiadis 
(2007), Hung and Yang (2008), from which we can also get some entropy 
measures for HFEs. 

According to Shannon’s inequality (Lin 1991), we first give the following 
definition: 

       
Definition 2.7 (Xu and Xia 2012a).  Let 1h  and 2h  be two HFEs, then the 

cross-entropy 1 2( , )C h h  of 1h  and 2h   should satisfy the following 

conditions: 
       

(1) 1 2( , ) 0C h h ≥ . 
       

(2) 1 2( , ) 0C h h =  if and only if ( ) ( )
1 2

i ih hσ σ= , 1, 2, ,i l=  . 
       

Based on Definition 2.7, we can give a cross-entropy formula of 1h  and 2h  

defined as: 
       

1 1 2( , )C h h  
       

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1 2 2

10

1 ln 1 1 ln 11

2

i i i il

i

qh qh qh qh

lT

σ σ σ σ

=

 + + + + +
=



  

       
( ) ( ) ( ) ( )

1 2 1 22 2
ln

2 2

i i i iqh qh qh qhσ σ σ σ+ + + +−  

       

( )( ) ( )( ) ( )( ) ( )( )( 1) ( 1) ( 1) ( 1)
1 1 2 21 1 ln 1 1 1 1 ln 1 1

2

l i l i l i l iq h q h q h q hσ σ σ σ− + − + − + − ++ − + − + + − + −
+  

( ) ( )( 1) ( 1) ( 1) ( 1)
1 2 1 22 1 1 2 1 1

ln
2 2

l i l i l i l iq h h q h hσ σ σ σ− + − + − + − + + − + − + − + −
−



, 0q >  

  (2.141)               

where ( ) ( ) ( ) ( )( )0 1 ln 1 2 ln 2 ln 2T q q q q= + + − + + − , and 0q > . 
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Since  
       

 ( ) (1 ) ln(1 )f x qx qx= + + , 0 1x≤ ≤                  (2.142) 
       

then 

'( ) ln(1 ) 0xf x q qx q= + + ≥ , ''( )xf x =
2

0
1

q

qx
>

+
      (2.143) 

       
Thus ( )f x  is a concave-up function of x . Therefore, 1 1 2( , ) 0C h h ≥  and 

1 1 2( , ) 0C h h =  if and only if ( ) ( )
1 2

i ih hσ σ= , 1, 2, ,i l=  . Moreover, 

1 1 2( , )C h h  degenerates to their fuzzy counterparts when 1h  and 2h  are fuzzy 

sets. According to Definition 2.7, 1 1 2( , )C h h  is a cross-entropy of 1h  and 2h . 
       

Theorem 2.9 (Xu and Xia 2012a).  Let h  be a HFE, then 

( )1( ) 1 , c
aE h C h h= −  is an entropy formula for h . 

       

Proof. ( )1( ) 1 , c
aE h C h h= −  

       

0

2
1

hl T
= −

( ) ( ) ( )( ) ( )( )( 1) ( 1)( ) ( )

1

1 ln 1 1 1 ln 1 1

2

h h
h

l i l ii il

i

qh qh q h q hσ σσ σ − + − +

=

 + + + + − + −




  

       

( ) ( )( 1) ( 1)( ) ( )2 1 2 1
ln

2 2

h hl i l ii iqh q h qh q hσ σσ σ− + − + + + − + + −
−



, 0q >   (2.144) 

       
where ( ) ( ) ( ) ( )( )0 1 ln 1 2 ln 2 ln 2T q q q q= + + − + + − , and 0q > . 

Based on Definition 2.5, the laws (1), (2) and (4) are obvious, then we only 
prove the law (3): 

       

(3) If ( ) ( )
1 2

i ih hσ σ≤  for ( ) ( 1)
2 2 1i l ih hσ σ − ++ ≤ , 1, 2, ,i l=  , we have  

       

     ( ) ( ) ( 1) ( 1)
1 2 2 11 1i i l i l ih h h hσ σ σ σ− + − +≤ ≤ − ≤ −             (2.145) 

       
which means  

       

         ( ) ( 1) ( ) ( 1)
1 1 2 21 1i l i i l ih h h hσ σ σ σ− + − ++ − ≥ + −       (2.146) 
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Let 0 , 1x y≤ ≤  and | |d x y= − , then  
        

(1 ) ln(1 ) (1 ) ln(1 )
( , )

2

qx qx qy qy
f x y

+ + + + +=   

        
1 1 1 1

ln
2 2

qx qy qx qy+ + + + + +− , 0q >                (2.147) 

        
If x y≥ , then x d y= + , and 

        
(1 ( )) ln(1 ) (1 ) ln(1 )

( , )
2

q d y qd qy qy qy
f d y

+ + + + + + +=  

        
1 ( ) 1 1 ( ) 1

ln
2 2

q d y qy q d y qy+ + + + + + + +− , 0q >          (2.148) 

        
then  

        

' ln(1 ( )) ln(1 )
( , )

2d

q q q y d q q qy
f d y

+ + + + + +=  

        
1 ( ) 1

ln 0
2 2 2

q q q y d qy+ + + +− − ≥ , 0q >              (2.149)    

        
thus ( , )f x y  is a non-decreasing function of | |x y− , for x y≥ .  

        
With the same reason, we can prove it is also true for x y≤ . Therefore, 

1 2( ) ( )a aE h E h≤ . 

Another cross-entropy formula of 1h  and 2h  can be defined as: 
        

( )
( ) ( ) ( ) ( )( ) ( ) ( 1) ( 1)

1 2 1 2

2 1 2 1
1

1 11
( , )

2 21 2

i i l i l il

i

h h h h
C h h

l

λ λ λ λσ σ σ σ

λ

− + − +

−
=

 + − + −= +
−


  

        
( ) ( ) ( 1) ( 1)

1 2 1 21 1

2 2

i i l i l ih h h h
λ λσ σ σ σ− + − +    + − + − − +        

, 1λ >      (2.150)                         

        
Since ( )g x xλ= , 0 1x≤ ≤  and 1λ > , then ' 1( )xg x xλλ −=  and 

'' 2( ) ( 1) 0xg x xλλ λ −= − > .  
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Thus, ( )g x  is a concave-up function of x , and then 2 1 2( , ) 0C h h ≥  and 

2 1 2( , ) 0C h h =  if and only if 1 2h h= . Moreover, 2 1 2( , ) 0C h h =  degenerates 

to their fuzzy counterparts when 1h  and 2h  are fuzzy sets. According to 

Definition 2.7, 2 1 2( , )C h h  is a cross-entropy of 1h  and 2h . 
        

Theorem 2.10 (Xu and Xia 2012a).  Let h  be a HFE, then 

( )2( ) 1 , c
bE h C h h= −  is an entropy formula for h . 

        

Proof.  ( )2( ) 1 , c
bE h C h h= −  

        

( )
( ) ( ) ( ) ( )( 1)( ) ( 1) ( )

1
1

1 11
1

2 21 2

hh
l ii l i il

ih

h h h h

l

λλ λ λσσ σ σ

λ

− + − +

−
=

 + − − += − +
−


  

        
( 1) ( 1)( ) ( )1 1

2 2

h hl i l ii ih h h h
λ λσ σσ σ− + − +    + − − + − +        

 

        

( )
( ) ( )( 1)( ) ( 1)( )

1
1

12 1
1

2 21 2

h
h h

l iil l ii

ih

h h h h

l

λλ λσσ σσ

λ

− + − +

−
=

 + −  + − = − −  −   
 ,  

1λ >                                   (2.151)                 
        

Based on Definition 2.5, the laws (1), (2) and (4) are obvious, then we only 
prove the law (3): 

        
(3) If 1 2h h⊆ , for ( ) ( 1)

2 2 1i l ih hσ σ − ++ ≤ , then we have 
        

( ) ( )
1 2

i ih hσ σ≤  ( 1)
21 l ihσ − +≤ − ( 1)

11 l ihσ − +≤ −              (2.152) 
        

which implies  
        

        ( ) ( 1) ( ) ( 1)
1 1 2 21 1i l i i l ih h h hσ σ σ σ− + − ++ − ≥ + −         (2.153) 

        
Let | |d x y= −  and  

        

        ( , )
2 2

x y x y
g x y

λλ λ+ + = −  
 

, 0 , 1x y≤ ≤ , 1λ >   (2.154) 
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If x y≥ , then x y d= + , and  
        

( )
( , )

2 2

y d y d
g d y y

λλ λ+ +  = − + 
 

, 1p >           (2.155) 

                              
        

1
' 1( , ) ( ) 0

2 2d

d
g d y y d y

λ
λλ −

−
  = + − + ≥     

, 1λ >       (2.156) 

                        
        

thus ( , )g x y  does not decrease as | |x y−  increases. With the same reason, we 

can prove it is also true for x y≤ . Therefore, 1 2( ) ( )b bE h E h≤ . 
        

Up to now, the MADM problems have been investigated under different 
environments. For example, Fan and Liu (2010) proposed an approach to solving 
the group decision making problems with ordinal interval numbers. Xu (2007c), 
Xu and Chen (2008c) focused on multi-attribute group decision making with 
different formats of preference information on attributes. Xu and Yager (2011) 
developed some intuitionistic fuzzy Bonferroni means and applied them to 
MADM. 

In the decision making process, sometimes, the information about attribute 
weights (Chou et al. 2008; Yeh and Chang 2009) is completely unknown because of 
time pressure, lack of knowledge or data, and the DM (expert)’s limited expertise 
about the problem domain. Some classical weight-determining methods have been 
developed over the last decades, including the TOPSIS method (Hwang and Yoon 
1981) and the entropy method (Ye 2010), but they cannot be suitable to deal with 
the situation that the degrees of an alternative satisfies to an attribute are presented 
by several possible values which can be considered a HFE. Xu and Xia (2012a) 
extended the entropy method to hesitant fuzzy environment and obtained the final 
optimal alternative by comparing the cross-entropy measures with the ideal 
solutions. 

Suppose that there are n  alternatives iA ( 1, 2, ,i n=  ) and m  attributes 

jx ( 1, 2, ,j m=  ) with the attribute weight vector 1 2( , , , )mw w w w Τ=   

such that [0,1]jw ∈ , 1,2, ,j m=  , and 
1

1
m

j
j

w
=

= . Suppose that a decision 

organization is authorized to provide all the possible degrees that the alternative iA  

satisfies the attribute jx , denoted by a HFE ijh .  

Based on the above analysis, Xu and Xia (2012a) gave the following decision 
making methods: 
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(Algorithm 2.1) 
        

Step 1. The DM provides all the possible evaluations about the alternative iA  

under the attribute jx , denoted by the HFEs ijh ( 1, 2, ,i n=  ; 

1, 2, ,j m=  ). 
        

Step 2. If the information about the weight jw  of the attribute jx  is unknown 

completely, then we establish an exact model of entropy weights for determining 
the attribute weights: 

        

1

1 j
j m

j
j

E
w

n E
=

−
=

−
, 1, 2, ,j m=               (2.157)                      

where 
1

1
( )

n

j ij
i

E E h
n =

=  , 1, 2, ,j m=  . 

        
Step 3.  Let 1J  and 2J  be the sets of benefit type attributes and cost type 

attributes, respectively. Suppose that the hesitant fuzzy ideal solution is h+ =  

( )1 2, , , nh h h+ + + and the hesitant fuzzy negative ideal solution is 

( )1 2, , , nh h h h− − − −=  , where {1}ih+ = , {0}ih− = , 1i J∈  and {0}ih+ = , 

{1}ih− = , 2i J∈ . Then we calculate the cross-entropy between the alternative 

iA  and the positive-ideal solution or the negative-ideal solution: 
        

   ( )( )
1

( ) ,
m

i j ij j
j

C A w C h h+ +

=

= , 1, 2, ,i n=               (2.158) 

        

    ( )( )
1

( ) ,
m

i j ij j
j

C A w C h h− −

=

= , 1, 2, ,i n=               (2.159) 

        
Step 4.  Calculate the closeness degree of the alternative iA  to the ideal solution 

by using  
        

     
( )

( )
( ) ( )

i
i

i i

C A
c A

C A C A

+

+ −=
+

, 1, 2, ,i n=             (2.160) 
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Step 5. Rank the alternatives iA ( 1, 2, ,i n=  ) according to the values of 

( )ic A ( 1, 2, ,i n=  ) in ascending order, and the smaller the value of ( )ic A , the 

better the alternative iA . 

If we use the maximizing deviation method (Wang 1998) to derive the weight 
vector of the attributes in Step 2, and use the TOPSIS method (Hwang and Yoon 
1981) to compare the alternatives in Steps 3 and 4, then the following method can 
be obtained:   

        
(Algorithm 2.2) 

        
Step 1.  See Algorithm 2.1. 

        
Step 2.  Calculate the weight vector of the attribute weight jw  of the attribute 

jx  by the maximizing deviation method: 
        

          

( )

( )
1 1

1 1 1

,

,

n n

ij kj
i k

j m n n

ij kj
j i k

d h h
w

d h h

= =

= = =

=



, 1, 2, ,j m=             (2.161) 

        

where ( ),ij kjd h h  is the distance between as defined by Xu and Xia (2011c) 

such that for two HFEs 1h  and 2h , the distance measure between 1h  and 2h , 

denoted as ( )1 2,d h h  is defined as: 
        

     ( ) ( ) ( )
1 2 1 2

1

1
,

l
i i

i

d h h h h
l

σ σ

=
= −                (2.162) 

        
Step 3. Calculate the distance between the alternative iA  and the positive-ideal 

solution T
1 2( , , , )mh h h h+ + + +=   or the negative-ideal solution 
T

1 2( , , , )mh h h h− − − −=  : 
        

( )( )
1

( ) ,
m

i j ij j
j

d A w d h h+ +

=

= , 1, 2, ,i n=              (2.163)                  

        

( )( )
1

( ) ,
m

i j ij j
j

d A w d h h− −

=

= , 1, 2, ,i n=              (2.164)                
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Step 4. Calculate the closeness degree of the alternative iA  to the ideal solution 

h+  by using  
        

( )
( )

( ) ( )
i

i
i i

d A
c A

d A d A

−

− +=
+

, 1, 2, ,i n=                   (2.165) 

        
Step 5. Rank the alternatives iA ( 1, 2, ,i n=  ) according to the values of 

( )ic A ( 1, 2, ,i n=  ) in ascending order, and the smaller the value of ( )ic A , the 

better the alternative iA . 
        

Example 2.8 (Xu and Xia 2012a). An automotive company is desired to select the 
most appropriate supplier for one of the key elements in its manufacturing process 
(adapted from Boran et al. 2009). After pre-evaluation, four suppliers have been 
remained as alternatives for further evaluation. In order to evaluate alternative 

suppliers, four attributes are considered as: (1) 1x : Product quality; (2) 2x : 

Relationship closeness; (3) 3x : Delivery performance; (4) 4x : Price, where 1x , 

2x  and 3x  are the benefit-type attributes, and 4x  is the cost-type attribute.  

To get the optimal alternative, the following steps are given if Algorithm 2.1 is 
used: 

        
Step 1. The decision organization provides all the possible assessments of the 

alternative iA  on the attribute jx  which can be considered as a HFE ijh  

constructing the hesitant fuzzy decision matrix ( )
4 4ijH h
×

=  (see Table 2.13 

(Xu and Xia 2012a)). For example, to evaluate the degrees that the alternative 1A  

should satisfy the attribute 1x , some DMs in the decision organization provide 

0.2 , some provide 0.4  and the others provide 0.7 , and these three parts 

cannot persuade each other, therefore, the degrees that the alternative 1A  satisfies 

the attribute 1x  can be considered a HFE {0.2, 0.4, 0.7} . 

Table 2.13. Hesitant fuzzy decision matrix 

 
1x  2x  3x  4x  

1A  {0.2,0.4,0.7} {0.1,0.2,0.5,0.7} {0.2,0.3,0.5,0.7,0.8} {0.1,0.4,0.6} 

2A  {0.4,0.6,0.7} {0.1,0.2,0.4,0.6} {0.3,0.4,0.6,0.8,0.9} {0.1,0.2,0.4} 

3A  {0.2,0.3,0.6} {0.3,0.4,0.5,0.9} {0.2,0.4,0.6,0.7,0.8} {0.3,0.4,0.8} 

4A  {0.2,0.3,0.5} {0.2,0.3,0.5,0.7} {0.4,0.6,0.7,0.8,0.9} {0.1,0.2,0.7} 
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Step 2. Suppose that the information about the attribute weight jw  of the attribute 

jx  is unknown completely, then we calculate the entropy matrix by 

( )aE h ( 2)q =  (see Table 2.14 (Xu and Xia 2012a)): 

Table 2.14. Entropy matrix  

 
1x  2x  3x  4x  

1A  0.9800 0.9350 0.9920 0.9267 

2A  0.9800 0.8750 0.9600 0.7133 

3A  0.9200 0.9750 0.9880 0.9800 

4A  0.8867 0.9750 0.8680 0.8533 

 
and then we can obtain the weight vector: 

        

( )0.1957,0.2013,0.1611,0.4419w
Τ=  

        
Step 3. Utilize 1 1 2( , )C h h  (let 2q = ) to calculate the cross-entropy between the 

alternative iA  and the positive-ideal solution or the negative-ideal solution: 
        

1( ) 0.2850C A+ =  , 2( ) 0.2040C A+ = , 3( ) 0.3127C A+ = , 4( ) 0.2648C A+ =  
        

1( ) 0.3329C A− =  , 2( ) 0.4275C A− = , 3( ) 0.2834C A− = , 4( ) 0.3747C A− =  
        

Step 4. Calculate the closeness degree of the alternative iA  to the ideal solution:  
        

1( ) 0.4613c A =  , 2( ) 0.3230c A = , 3( ) 0.5245c A = , 4( ) 0.4141c A =  
        

Step 5. Rank the alternatives iA ( 1, 2,3,4i = ) according to the values of 

( )ic A ( 1, 2,3,4i = ) in ascending order: 
        

2 4 1 3A A A A    
        

If we use ( )bE h  and 2 1 2( , )C h h  (let 3p = ) in the proposed method, then 

the following steps are given: 
        

Step 1.  See the above. 
        

Step 2.  Utilize ( )bE h  to calculate the attribute weight vector, then 
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(0.1801,0.2123,0.1615,0.4460)w Τ=  
        

Step 3.  Utilize 2 1 2( , )C h h  to calculate the cross-entropy between the alternative 

iA  and the positive-ideal solution or the negative-ideal solution, we can obtain 
        

1( ) 0.2916C A+ =  , 2( ) 0.2144C A+ = , 3( ) 0.3169C A+ = , 4( ) 0.2676C A+ =  
        

1( ) 0.3393C A− =  , 2( ) 0.4297C A− = , 3( ) 0.2929C A− = , 4( ) 0.3817C A− =  
        

Step 4.  Calculate the closeness degree of the alternative iA  to the ideal solution:  
        

1( ) 0.4622C A =  , 2( ) 0.3329C A = , 3( ) 0.5197C A = , 4( ) 0.4121C A =  
        

Step 5.  According to the values of ( )iC A ( 1, 2,3,4i = ), we can get the same 

ranking of iA ( 1, 2,3,4i = ): 2 4 1 3A A A A   . 
        

If Algorithm 2.2 is used, then the following steps are given: 
        

Step 1. See Algorithm 2.1. 
        

Step 2. Calculate the weight vector of the attribute weight jw  of the attribute jx : 

(0.2629,0.2229,0.2057,0.3086)w Τ=  
        

Step 3. Calculate the distance between the alternative iA  and the positive-ideal 

solution or the negative-ideal solution: 
        

1( ) 0.4958d A− =  , 2( ) 0.5815d A− = , 3( ) 0.4788d A− = , 4( ) 0.5280d A− =  
        

1( ) 0.5042d A+ =  , 2( ) 0.4185d A+ = , 3( ) 0.5213d A+ = , 4( ) 0.4720d A+ =  
        

Step 4. Calculate the closeness degree of the alternative iA  to the ideal solution:  
        

1( ) 0.4958c A =  , 2( ) 0.5815c A = , 3( ) 0.4788c A = , 4( ) 0.5280c A =  
        

Step 5. Rank the alternatives iA ( 1, 2,3,4i = ) according to the values of 

( )ic A ( 1, 2,3,4i = ) in ascending order: 2 4 1 3A A A A   , which is the 

same as that in Algorithm 2.1. 
If we use the HFWA operator (1.32) to aggregate the hesitant fuzzy information 

for each alternative, then according to Definition 1.2, we calculate the scores 

( )is A 1, 2,3,4i =  of the alternative iA ( 1, 2,3,4i = ), and suppose that the 

weight vector of alternatives, (0.1957,0.2013,0.1611,0.4419)w Τ= , is 

obtained from Algorithm 2.1, thus, we have 
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1( ) 0.4503s A =  , 2( ) 0.4683s A = , 3( ) 0.5268s A = , 4( ) 0.4793s A =  
        

Ranking the alternatives iA ( 1, 2,3,4i = ) according to the values of 

( )is A ( 1, 2,3,4i = ) in ascending order, we get the ranking result: 

2 4 1 3A A A A   , which is just as that derived from Algorithms 2.1 and 2.2. 

From the above analysis, we can find that although these three methods can get 
the same ranking of the alternatives, the first one focuses on the information entropy 
and cross entropy measures, the second on the distance measures, and both of them 
are suitable for dealing with the situations that the weight vector of the alternatives 
are unknown; The last one is only suitable for the situations that the weight vector of 
attributes are known. The first two methods are much simpler than the last one, 
because the aggregation operators in the last method need a lot of computation, 
which can be avoided in the first two methods. In addition, the weight vector 
obtained using the first method is based on the entropy method which focuses on  
the fuzziness of the provided information, while the weight vector obtained using 
the second one is based on the maximizing deviation method which focuses on the 
deviations among the decision information, therefore we should choose a proper 
method according to the practical problems.  

2.4   Correlation Coefficients of HFSs and Their Applications 
to Clustering Analysis 

In this section, we will introduce some formulas of the correlation coefficients for 
HFSs. In addition, we will apply these derived correlation coefficient formulas to 
do clustering analysis for hesitant fuzzy information.  

Similar to the existing work (Gerstenkorn and Mańko 1991; Bustince and 
Burillo 1995), Chen et al. (2013a) defined the informational energy for HFSs and 
the corresponding correlation:  

         
Definition 2.8 (Chen et al. 2013a). For a HFS { , ( ) ,i A i iA x h x x X= < > ∈  

1,2, , }i n=  , the informational energy of the set A  is defined as:  
         

( )2( )

1 1

1
( ) ( )

xi

i

ln
j

A i
i jx

A h x
l

σψ
= =

 
=   

 
                 (2.166)                       

         
Definition 2.9 (Chen et al. 2013a).  For two HFSs 1A  and 2A , their 

correlation is defined by 
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1 2

( ) ( )
1 1 2

1 1

1
( , ) ( ) ( )

xi

i

ln
j j

A i A i
i jx

A A h x h x
l

σ σρ
= =

 
=   

 
 

    

  (2.167)                  

         
For 1 2, HFSsA A ∈ , the correlation satisfies:  

         
(1) 1 1 1 1( , ) ( )A A Aρ ψ= . 

         
(2) 1 1 2 1 2 1( , ) ( , )A A A Aρ ρ= . 

         
Using Definitions 2.8 and 2.9, we derive a correlation coefficient for HFSs: 

         
Definition 2.10 (Chen et al. 2013a).  The correlation coefficient between two 

HFSs 1A  and 2A  is given as:  
         

( ) ( )
1 1 2

1 1 2 1 1

2 2
1 1 1 1 2 2

( , )
( , )

( , ) ( , )

A A
c A A

A A A A

ρ

ρ ρ
=

⋅
 

         

( ) ( )

1 2

1 2

( ) ( )

1 1

1 1

2 2
2 2( ) ( )

1 1 1 1

1
( ) ( )

1 1
( ) ( )

xi

i

x xi i

i i

ln
j j

A i A i
i jx

l ln n
j j

A i A i
i j i jx x

h x h x
l

h x h x
l l

σ σ

σ σ

= =

= = = =

 
  
 =

      
⋅                  

 

   

    (2.168)  

         
Theorem 2.11 (Chen et al. 2013a).  The correlation coefficient between two 

HFSs 1A  and 2A  satisfies:  
         

(1) 1 1 2 1 2 1( , ) ( , )c A A c A A= . 
         

(2) 1 1 20 ( , ) 1c A A≤ ≤ . 
         

(3) 1 1 2( , ) 1c A A = , if 1 2A A= . 
         

Proof. (1) It is straightforward. 
         

(2) The inequality 1 1 2( , ) 0c A A ≥  is obvious. Below let us prove 

1 1 2( , ) 1c A A ≤ :  

1 1 2( , )A Aρ =
1 2

( ) ( )

1 1

1
( ) ( )

xi

i

ln
j j

A i A i
i jx

h x h x
l

σ σ

= =
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=
1 2

1 2 1 2 1 2

1 2

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2

1 1 1

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

xx x n

n

ll l
j j j j j j

A A A A A n A n
j j jx x x

h x h x h x h x h x h x
l l l

σ σ σ σ σ σ

= = =

+ + +    

         

=
1 2

1 2 1 2 1 2

1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )
1 1 2 2

1 1 1

( ) ( ) ( ) ( ) ( ) ( )xx x n

n n

j j j j j jll l
A A A A A n A n

j j jx x x x x x

h x h x h x h x h x h x

l l l l l l

σ σ σ σ σ σ

= = =

⋅ + ⋅ + + ⋅   (2.169) 

Using the Cauchy-Schwarz inequality: 
         

( ) ( ) ( )2 2 2 2 2 2 2
1 1 2 2 1 2 1 2n n n nx y x y x y x x x y y y+ + ≤ + + + ⋅ + + +    (2.170) 

where ( ) ( )1 2 1 2, , , , , , ,n n
n nx x x y y y∈ℜ ∈ℜ  , and ℜ  is the set of all 

real numbers, then we obtain 

( )2

1 1 2( , )A Aρ

( ) ( ) ( )
1 2

1 1 1

1 2

2 2 2( ) ( ) ( )
1 2

1 1 1

1 1 1
( ) ( ) ( )

xx n

n

ll x
j j j

A A A n
j j jx x x

h x h x h x
l l l

σ σ σ

= = =

 
≤ + + + 
  
    

         

( ) ( ) ( )
1 2

2 2 2

1 2

2 2 2( ) ( ) ( )
1 2

1 1 1

1 1 1
( ) ( ) ( )

xx x n

n

ll l
j j j

A A A n
j j jx x x

h x h x h x
l l l

σ σ σ

= = =

 
× + + + 
  
    

         

   = ( ) ( ) ( )
1 2

1 1 1

1 2

2 2 2( ) ( ) ( )
1 2

1 1 1

1 1 1
( ) ( ) ( )

xx x n

n

ll l
j j j

A A A n
j j jx x x

h x h x h x
l l l

σ σ σ

= = =

 
+ + + 

  
    

         

( ) ( ) ( )
1 2

2 2 2

1 2

2 2 2( ) ( ) ( )
1 2

1 1 1

1 1 1
( ) ( ) ( )

xx x n

n

ll l
j j j

A A A n
j j jx x x

h x h x h x
l l l

σ σ σ

= = =

 
× + + + 
  
    

         

= ( ) ( )
1 2

2 2( ) ( )

1 1 1 1

1 1
( ) ( )

x xi i

i i

l ln n
j j

A i A i
i j i jx x

h x h x
l l

σ σ

= = = =

      
⋅                  
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1 1 1 1 2 2( , ) ( , )A A A Aρ ρ= ⋅                               (2.171) 

Therefore  

     1 1 2( , )A Aρ ( ) ( )
1 1
2 2

1 1 1 1 2 2( , ) ( , )A A A Aρ ρ≤ ⋅            (2.172) 
         

So 1 1 20 ( , ) 1c A A≤ ≤ . 

(3) 
1 2

( ) ( )
1 2 1 1 2( ) ( ) ( ) ( , ) 1j j

A i A i iA A h x h x x X c A Aσ σ=  = ∈  = . 
         

Example 2.9 (Chen et al. 2013a).  Let 1A  and 2A  be two HFSs in 

{ }1 2 3, ,X x x x= , and 
         

{ } { } { }{ }1 1 2 3, 0.7,0.5 , , 0.9,0.8,0.6 , , 0.5,0.4,0.2A x x x= < > < > < >  
         

{ } { } { }{ }2 1 2 3, 0.4,0.2 , , 0.8,0.5,0.4 , , 0.7,0.6,0.3A x x x= < > < > < >  
         

Then we calculate  
         

1 1 1 1( , ) ( )A A Aρ ψ= ( )
1

3 2( )

1 1

1
( )

xi

i

l
j

A i
i jx

h x
l

σ

= =

 
=   

 
   

         

= ( ) ( ) ( )
1 1 1

2 3 32 2 2( ) ( ) ( )
1 2 3

1 1 1

1 1 1
( ) ( ) ( )

2 3 3
j j j

A A A
j j j

h x h x h xσ σ σ

= = =

+ +    

= ( ) ( ) ( )2 2 2 2 2 2 2 21 1 1
0.7 0.5 0.9 0.8 0.6 0.5 0.4 0.2

2 3 3
+ + + + + + +  

         
1.1233=  

         
and similarly, 

         

1 2 2 2( , ) ( )A A Aρ ψ= ( )
2

3 2( )

1 1

1
( )

xi

i

l
j

A i
i jx

h x
l

σ

= =

 
=   

 
   

         

= ( ) ( ) ( )
2 2 2

2 3 32 2 2( ) ( ) ( )
1 2 3

1 1 1

1 1 1
( ) ( ) ( )

2 3 3
j j j

A A A
j j j

h x h x h xσ σ σ

= = =

+ +  
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= ( ) ( ) ( )2 2 2 2 2 2 2 21 1 1
0.4 0.2 0.8 0.5 0.4 0.7 0.6 0.3

2 3 3
+ + + + + + +  

         
0.7633=  

         

1 2

3
( ) ( )

1 1 2
1 1

1
( , ) ( ) ( )

xi

i

l
j j

A i A i
i jx

A A h x h x
l

σ σρ
= =

 
=   

 
   

         

=
1 2 1 2 1 2

2 3 3
( ) ( ) ( ) ( ) ( ) ( )

1 1 2 2 3 3
1 1 1

1 1 1
( ) ( ) ( ) ( ) ( ) ( )

2 3 3
j j j j j j

A A A A A A
j j j

h x h x h x h x h x h xσ σ σ σ σ σ

= = =

+ +    

         
1 1 1

(0.7 0.4 0.5 0.2) (0.9 0.8 0.8 0.5 0.6 0.4) (0.5 0.7
2 3 3

= × + × + × + × + × + ×  

         
0.4 0.6 0.2 0.3) 0.86+ × + × =  

         
and then, we have 

         

( ) ( )
1 1 2

1 1 2 1 1

2 2
1 1 1 1 2 2

( , )
( , )

( , ) ( , )

A A
c A A

A A A A

ρ

ρ ρ
=

⋅
 

         

=
0.86

0.9288
1.1233 0.7633

=
⋅

 

         
         

Obviously, 1 1 20 ( , ) 1c A A< < . 
         

In what follows, we give a new formula of calculating the correlation coefficient 
of HFSs, which is similar to that used in IFSs (Xu et al. 2008): 

         
Definition 2.11. (Chen et al. 2013a)  For two HFSs 1A  and 2A , their 

correlation coefficient is defined by 
         

{ }
1 1 2

2 1 2
1 1 1 1 2 2

( , )
( , )

max ( , ), ( , )

A A
c A A

A A A A

ρ
ρ ρ

=   

         

( ) ( )

1 2

1 2

( ) ( )

1 1

2 2( ) ( )

1 1 1 1

1
( ) ( )

1 1
max ( ) , ( )

xi

i

x xi i

i i

ln
j j

A i A i
i jx

l ln n
j j

A i A i
i j i jx x

h x h x
l

h x h x
l l

σ σ

σ σ

= =

= = = =

 
  
 =

     
            

 

   
   

  (2.173) 
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Theorem 2.12 (Chen et al. 2013a).  The correlation coefficient of two HFSs 1A  

and 2A , 2 1 2( , )c A A , follows the same properties listed in Theorem 2.11.  

Proof.  The process to prove the properties (1) and (3) is analogous to that in 
Theorem 2.11, we do not repeat it here.  

(2) 2 1 2( , ) 0c A A ≥  is obvious. We now only prove 2 1 2( , ) 1c A A ≤ . 

Based on the proof process of Theorem 2.11, we have  
         

    1 1 2( , )A Aρ ( ) ( )
1 1

2 2
1 1 1 1 2 2( , ) ( , )A A A Aρ ρ≤ ⋅               (2.174) 

         

and then   
         

1 1 2( , )A Aρ { }1 1 1 1 2 2max ( , ), ( , )A A A Aρ ρ≤               (2.175) 
           

Thus, 2 1 2( , ) 1c A A ≤ .  

In practical applications, the elements ix ( 1, 2, , )i n=   in the universe 

X  have different weights. Let 1 2( , , , )nw w w w Τ=   be the weight vector of 

ix ( 1, 2, , )i n=   with 0iw ≥ , 1, 2, ,i n=   and 
1

1
n

i
i

w
=

= , we further 

extend the correlation coefficient formulas 1 1 2( , )c A A  and 2 1 2( , )c A A  as:  
         

( ) ( )
2 1 2

3 1 2 1 1

2 2
2 1 1 2 2 2

( , )
( , )

( , ) ( , )

A A
c A A

A A A A

ρ

ρ ρ
=

⋅
 

         

=

( ) ( )

1 2

1 2

( ) ( )

1 1

1 1

2 2
2 2( ) ( )

1 1 1 1

1
( ) ( )

1 1
( ) ( )

xi

i

x xi i

i i

ln
j j

i A i A i
i jx

l ln n
j j

i A i i A i
i j i jx x

w h x h x
l

w h x w h x
l l

σ σ

σ σ

= =

= = = =

 
  
 

      
⋅                  

 

   

   (2.176)                
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{ }
2 1 2

4 1 2
2 1 1 2 2 2

( , )
( , )

max ( , ), ( , )

A A
c A A

A A A A

ρ
ρ ρ

=  

         

=

( ) ( )

1 2

1 2

( ) ( )

1 1

2 2( ) ( )

1 1 1 1

1
( ) ( )

1 1
max ( ) , ( )

xi

i

x xi i

i i

ln
j j

i A i A i
i jx

l ln n
j j

i A i i A i
i j i jx x

w h x h x
l

w h x w h x
l l

σ σ

σ σ

= =

= = = =

 
  
 

     
            

 

   
    (2.177)                 

         

It can be seen that if 
1 1 1

, ,...,w
n n n

Τ
 =  
 

, then 3 1 2( , )c A A  and 

4 1 2( , )c A A  reduce to 1 1 2( , )c A A  and 2 1 2( , )c A A , respectively. Note that both 

3 1 2( , )c A A  and 4 1 2( , )c A A  also satisfy three properties of Theorem 2.11.  
         

Theorem 2.13 (Chen et al. 2013a).  Let 1 2( , , , )nw w w w Τ=   be the weight 

vector of ix ( 1, 2, , )i n=   with 0iw ≥ , 1, 2, ,i n=   and 
1

1
n

i
i

w
=

= , 

the correlation coefficient 3 1 2( , )c A A  between two HFSs 1A  and 2A , which 

takes into account the weights, satisfies:  
         

(1) 3 1 2 3 2 1( , ) ( , )c A A c A A= . 
         

(2) 3 1 20 ( , ) 1c A A≤ ≤ . 
         

(3) 3 1 2( , ) 1c A A = , if 1 2A A= . 
         

Proof.  (1) It is straightforward. 
         

(2) 3 1 2( , ) 0c A A ≥  is obvious. Below we prove 3 1 2( , ) 1c A A ≤ . Since 
         

2 1 2( , )A Aρ =
1 2

( ) ( )

1 1

1
( ) ( )

xi

i

ln
j j

i A i A i
i jx

w h x h x
l

σ σ

= =

 
  
 

   

=
1 2

1 2 1 2

1 2

( ) ( ) ( ) ( )1 2
1 1 2 2

1 1

( ) ( ) ( ) ( )
x xl l

j j j j
A A A A

j jx x

w w
h x h x h x h x

l l
σ σ σ σ

= =

+   
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1 2

( ) ( )

1

( ) ( )
xn

n

l
j jn

A n A n
jx

w
h x h x

l
σ σ

=

+ +   

=
1

1 2 1 2

1 1

( ) ( ) ( ) ( )
1 1 1 1

1 1

( ) ( ) ( ) ( )x xn

n n

j j j jl l
A A n A n n A n

j jx x x x

w h x w h x w h x w h x

l l l l

σ σ σ σ

= =

⋅ ⋅ ⋅ ⋅
⋅ + + ⋅ 

 

(2.178) 

         

and by using the Cauchy-Schwarz inequality, we obtain 
         

( )2

2 1 2( , )A Aρ

( ) ( ) ( )
1 2

1 1 1

1 2

2 2 2( ) ( ) ( )1 2
1 2

1 1 1

( ) ( ) ( )
xx x n

n

ll l
j j jn

A A A n
j j jx x x

ww w
h x h x h x

l l l
σ σ σ

= = =

 
≤ + + + 
  
    

( ) ( ) ( )
1 2

2 2 2

1 2

2 2 2( ) ( ) ( )1 2
1 2

1 1 1

( ) ( ) ( )
xx x n

n

ll l
j j jn

A A A n
j j jx x x

ww w
h x h x h x

l l l
σ σ σ

= = =

 
× + + + 
  
    

         

  = ( ) ( ) ( )
1 2

1 1 1

1 2

2 2 2( ) ( ) ( )1 2
1 2

1 1 1

( ) ( ) ( )
xx x n

n

ll l
j j jn

A A A n
j j jx x x

ww w
h x h x h x

l l l
σ σ σ

= = =

 
+ + + 

  
    

         

( ) ( ) ( )
1 2

2 2 2

1 2

2 2 2( ) ( ) ( )1 2
1 2

1 1 1

( ) ( ) ( )
xx x n

n

ll l
j j jn

A A A n
j j jx x x

ww w
h x h x h x

l l l
σ σ σ

= = =

 
× + + + 
  
    

         

= ( ) ( )
1 2

2 2( ) ( )

1 1 1 1

( ) ( )
x xi i

i i

l ln n
j ji i

A i A i
i j i jx x

w w
h x h x

l l
σ σ

= = = =

      
⋅                  

     

         

= ( ) ( )
1 2

2 2( ) ( )

1 1 1 1

1 1
( ) ( )

x xi i

i i

l ln n
j j

i A i i A i
i j i jx x

w h x w h x
l l

σ σ

= = = =

      
⋅                  

     

         

2 1 1 2 2 2( , ) ( , )A A A Aρ ρ= ⋅                                             (2.179) 
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Thus 

   2 1 2( , )A Aρ ( ) ( )
1 1
2 2

2 1 1 2 2 2( , ) ( , )A A A Aρ ρ≤ ⋅             (2.180) 
         

That is, 3 1 2( , ) 1c A A ≤ .  
         

(3) 
1 2

( ) ( )
1 2 3 1 2( ) ( ) ( ) ( , ) 1j j

A i A i iA A h x h x x X c A Aσ σ=  = ∈  = . 
         

Theorem 2.14 (Chen et al. 2013a).  The correlation coefficient of two HFSs 1A  

and 2A  defined in 2 1 2( , )c A A , which accounts for the weights, 4 1 2( , )c A A , 

satisfies the same properties as those in Theorem 2.13.  
Since the process to prove these properties is analogous to that in Theorem 2.12, 

we do not repeat it here.  
         

Example 2.10 (Chen et al. 2013a).  Let 1A , 2A , and 3A  be three HFSs in 

1 2 3{ , , }X x x x= , (0.3,0.3,0.4)w Τ=  the weight vector of ix ( 1, 2,3)i = , 

and 
         

{ } { } { }{ }1 1 2 3, 0.9,0.8,0.5 , , 0.2,0.1 , , 0.5,0.3,0.2,0.1A x x x= < > < > < >  

         

{ } { } { }{ }2 1 2 3, 0.7,0.5,0.4 , , 0.5,0.3 , , 0.6,0.4,0.3,0.1A x x x= < > < > < >  

         

{ } { } { }{ }3 1 2 3, 0.3,0.2,0.1 , , 0.3,0.2 , , 0.8,0.7,0.5,0.4A x x x= < > < > < >  

         
Then we can obtain  

         

3 1 2 3 1 3( , ) 0.9135, ( , ) 0.6700,c A A c A A= =  3 2 3( , ) 0.8278c A A =  

         
Obviously, 3 1 2 3 2 3 3 1 3( , ) ( , ) ( , )c A A c A A c A A> > . 

Based on the intuitionistic fuzzy clustering algorithm (Xu et al. 2008), and the 
correlation coefficient formulas developed previously for HFSs, Chen et al. 
(2013a) developed an algorithm to do clustering under hesitant fuzzy 
environments. Before doing this, some concepts are introduced firstly:  
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Definition 2.12 (Chen et al. 2013a).  Let ( 1, 2, , )iA i n=   be n  HFSs,  

and C = ( )ij n n
c

×
 a correlation matrix, where ( , )ij i jc c A A=  denotes the cor- 

relation coefficient of two HFSs iA  and jA  and satisfies: 
         

(1) 0 1ijc≤ ≤ , , 1, 2, ,i j n=  . 
         

(2) 1iic = , 1, 2, ,i n=  . 
         

(3) ij jic c= , , 1, 2, ,i j n=  . 
         

Definition 2.13 (Xu et al. 2008).  Let ( )ij n n
C c

×
=  be a correlation matrix, if 

2C = ( )ij n n
C C c

×
= , then 2C  is called a composition matrix of C , where 

         

{ }{ }max min , , , 1, 2, ,ij ik kj
k

c c c i j n= =             (2.181)                   

         

Theorem 2.15 (Xu et al. 2008).  Let ( )ij n n
C c

×
=  be a correlation matrix. 

Then the composition matrix 2C = ( )ij n n
C C c

×
=  is also a correlation 

matrix. 
         

Theorem 2.16 (Xu et al. 2008).  Let C  be a correlation matrix. Then for any 

nonnegative integers 1m  and 2m , the composition matrix 1 2m mC +  derived 

from 1 2 1 2m m m mC C C+ =   is still a correlation matrix.  
         

Definition 2.14 (Xu et al. 2008). Let ( )ij n n
C c

×
=  be a correlation matrix, if 

2C C⊆ , i.e.,  

{ }{ }max min , , , 1,2, ,ik kj ij
k

c c c i j n≤ =          (2.182)                    

         
then C  is called an equivalent correlation matrix. 

         

Theorem 2.17 (Wang 1983; Xu et al. 2008).  Let ( )ij n n
C c

×
=  be a correlation 

matrix. Then after the finite times of compositions: 
2 4 2k

C C C C→ → → →  → , there must exist a positive integer k  

such that 
( 1)2 2k k

C C
+

=  and 2k

C  is also an equivalent correlation matrix. 
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Definition 2.15 (Xu et al. 2008).  Let ( )ij n n
C c

×
=  be an equivalent correlation 

matrix. Then we call ( )
0 0 ij n n

C cλ λ ×
=  the 0λ -cutting matrix of C , where 

         

0
0

0

0 ,
, 1,2, ,

1 ,
ij

ij
ij

if c
c i j n

if cλ

λ
λ

<
= = ≥

              (2.183)        

 

and 0λ  is the confidence level with 0 [0,1]λ ∈ . 
         

Chen et al. (2013a) proposed an algorithm for clustering HFSs as follows: 
         

(Algorithm 2.3) 
         

Step 1.  Let { }1 2, , , nA A A  be a set of HFSs on { }1 2, , mX x x x=  . We 

can calculate the correlation coefficients of the HFSs, and then construct a 

correlation matrix ( ) ,ij n n
C c

×
=  where ( ),ij i jc c A A= . 

         

Step 2.  Check whether ( ) ,ij n n
C c

×
=  is an equivalent correlation matrix, i.e., 

check whether it satisfies 2C C⊆ , where  
         

( )2
ij n n

C C C c
×

= = , { }{ }max min , , , 1, 2, ,
jij ik k

k
c c c i j n= =   (2.184)     

         

If it does not hold, then we construct the equivalent correlation matrix 2k

C : 
         

2 4 2k

C C C C→ → → → →  , until 
( 1)2 2k k

C C
+

=         (2.185) 
         

Step 3.  For a confidence level 0λ , we construct a 0λ -cutting matrix 
0

Cλ =  

( )
0 ij n n
cλ ×

 in order to classify the HFSs ( 1, 2, , )iA i n=  . If all elements of 

the i th line (column) in 
0

Cλ  are the same as the corresponding elements of the 

j th line (column) in 
0

Cλ , then the HFSs iA  and jA  are of the same type. By 

means of this principle, we can classify all these n  HFSs ( 1, 2, , )iA i n=  . 

Below two real examples are employed to illustrate the need of the clustering 
algorithm based on HFSs:  

         
Example 2.11 (Chen et al. 2013a).  Software evaluation and classification is an 
increasingly important problem in any sector of human activity. Industrial 
production, service provisioning and business administration heavily depend on 
software which is more and more complex and expensive (Stamelos and Tsoukiàs 
2003). A CASE tool to support the production of software in a CIM environment 

, 

, 
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has to be selected from the ones offered on the market. CIM software typically has 
responsibility for production planning, production control and monitoring 
(Morisio and Tsoukiàs 1997).  

To better evaluate different types of CIM softwares ( 1, 2, ,7)iA i =   on the 

market, we perform clustering for them according to four attributes: (1) 1x : 

Functionality; (2) 2x : Usability; (3) 3x : Portability; (4) 4x : Maturity. Given the 

DMs (experts) who make such an evaluation have different backgrounds and 
levels of knowledge, skills, experience and personality, etc., this could lead to a 
difference in the evaluation information. To clearly reflect the differences of the 
opinions of different DMs, the data of evaluation information are represented by 
the HFSs and listed in Table 2.15 (Chen et al. 2013a). 

Table 2.15. Hesitant fuzzy information 

 
1x  2x  3x  4x  

1A  {0.9,0.85,0.8} {0.8,0.75,0.7} {0.8,0.65} {0.35,0.3} 

2A  {0.9,0.85} {0.8,0.7,0.6} {0.2} {0.15} 

3A  {0.4,0.3,0.2} {0.5,0.4} {1.0,0.9} {0.65,0.5,0.45} 

4A  {1.0,0.95,0.8} {0.2,0.15,0.1} {0.3,0.2} {0.8,0.7,0.6} 

5A  {0.5,0.4,0.35} {1.0,0.9,0.7} {0.4} {0.35,0.3,0.2} 

6A  {0.7,0.6,0.5} {0.9,0.8} {0.6,0.4} {0.2,0.1} 

7A  {1,0.8} {0.35,0.2,0.15} {0.2,0.1} {0.85, 0.7} 

 

Step 1. Calculate the correlation coefficients of the CIM softwares (iA i =  

1,2, ,7)  by using 3 1 2( , )c A A  with the weighting vector 

(0.35,0.30,0.15,w =  T0.2) , and let ( ){ }max ( ) , 1, 2, ,7
j ix A jl l h x i= =  . 

Then the derived correlation matrix is: 

1.0000 0.9531 0.8461 0.8192 0.9182 0.9686 0.8233

0.9531 1.0000 0.6573 0.8128 0.8861 0.9418 0.8292

0.8461 0.6573 1.0000 0.6722 0.8041 0.7939 0.6732

0.8192 0.8128 0.6722 1.0000 0.6243 0.6855 0.9906

0.9182 0.8861 0.8041 0.6243 1.0000

C =
0.9702 0.6671

0.9686 0.9418 0.7639 0.6855 0.9702 1.0000 0.7074

0.8233 0.8292 0.6732 0.9906 0.6671 0.7074 1.0000
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Step 2. Construct the equivalent correlation matrix and calculate  
         

2

1.0000 0.9531 0.8461 0.8233 0.9686 0.9686 0.8292

0.9531 1.0000 0.8461 0.8292 0.9418 0.9531 0.8292

0.8461 0.8461 1.0000 0.8192 0.8461 0.8461 0.8233

0.8233 0.8292 0.8192 1.0000 0.8192 0.8192 0.9906

0.9686 0.9418 0.8461 0.8192 1

C C C= =
.0000 0.9702 0.8292

0.9686 0.9531 0.8461 0.8192 0.9702 1.0000 0.8292

0.8292 0.8292 0.8233 0.9906 0.8292 0.8292 1.0000

 
 
 
 
 
 
 
 
 
 
 

 

         
It can be seen that 2C C⊆  does not hold. That is to say, the correlation 

matrix C  is not an equivalent correlation matrix. So, we further calculate 
         

4 2 2

1.0000 0.9531 0.8461 0.8292 0.9686 0.9686 0.8292

0.9531 1.0000 0.8461 0.8292 0.9531 0.9531 0.8292

0.8461 0.8461 1.0000 0.8292 0.8461 0.8461 0.8292

0.8292 0.8292 0.8292 1.0000 0.8292 0.8292 0.9906

0.9686 0.9531̀ 0.8461 0.82

C C C= =
92 1.0000 0.9702 0.8292

0.9686 0.9531 0.8461 0.8292 0.9702 1.0000 0.8292

0.8292 0.8292 0.8292 0.9906 0.8292 0.8292 1.0000

 
 
 
 
 
 
 
 
 
 
 

 

         
and 

         

8 4 4

1.0000 0.9531 0.8461 0.8292 0.9686 0.9686 0.8292

0.9531 1.0000 0.8461 0.8292 0.9531 0.9531 0.8292

0.8461 0.8461 1.0000 0.8292 0.8461 0.8461 0.8292

0.8292 0.8292 0.8292 1.0000 0.8292 0.8292 0.9906

0.9686 0.9531̀ 0.8461 0.82

C C C= =
92 1.0000 0.9702 0.8292

0.9686 0.9531 0.8461 0.8292 0.9702 1.0000 0.8292

0.8292 0.8292 0.8292 0.9906 0.8292 0.8292 1.0000

 
 
 
 
 
 
 
 
 
 
 

 

         
4C=  

         
Hence, 4C  is an equivalent correlation matrix. 
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Step 3. For a confidence level 0λ , to do clustering for the CIM softwares  

( 1, 2, ,7)iA i =  , we construct a 0λ -cutting matrix ( )
7 7ijC cλ λ ×

=  and 

based on which, we get all possible classifications of ( 1, 2, ,7)iA i =  :   
         

(1)  If 00 0.8292λ≤ ≤ , then ( 1, 2, ,7)iA i =   are of the same type: 
         

{ }1 2 3 4 5 6 7, , , , , ,A A A A A A A  
         

(2)  If 00.8292 0.8461λ< ≤ , then ( 1, 2, ,7)iA i =   are classified into 

two types: 

{ } { }1 2 3 5 6 4 7, , , , , ,A A A A A A A  
         

(3)  If 00.8461 0.9531λ< ≤ , then ( 1, 2, ,7)iA i =   are classified into 

three types: 

{ } { } { }1 2 5 6 3 4 7, , , , , ,A A A A A A A  
         

(4)  If 00.9531 0.9686λ< ≤ , then ( 1, 2, ,7)iA i =   are classified into 

four types: 
         

{ } { } { } { }1 5 6 2 3 4 7, , , , , ,A A A A A A A  
         

(5)  If 00.9686 0.9702λ< ≤ , then ( 1, 2, ,7)iA i =   are classified into 

five types: 
         

{ } { } { } { } { }1 2 3 5 6 4 7, , , , , ,A A A A A A A  
         

(6)  If 00.9702 0.9906λ< ≤ , then ( 1, 2, ,7)iA i =   are classified into 

six types: 

{ } { } { } { } { } { }1 2 3 5 6 4 7, , , , , ,A A A A A A A  
         

(7)  If 00.9906 1λ< ≤ , then ( 1,2, ,7)iA i =   are classified into seven types: 

{ } { } { } { } { } { } { }1 2 3 4 5 6 7, , , , , ,A A A A A A A  
         
 

Example 2.12 (Chen et al. 2013a).  The assessment of business failure risk, i.e., the 
assessment of firm performance and the prediction of failure events has drawn the 
attention of many researchers in recent years (Iopounidis 1987; Dimitras et al. 1995).  
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For this purpose, 10 firms ( 1, 2, ,10)iA i =   evaluated on five attributes ( 1 :x  

managers work experience, 2 :x  profitability, 3 :x  operating capacity, 4 :x  

debt-paying ability, and 5 :x  market competition) will be classified according to 

their risk of failure. In order to better make the assessment, several risk evaluation 
organizations are requested. The normalized evaluation data, represented by HFSs, 
are displayed in Table 2.16 (Chen et al. 2013a). 

         

Table 2.16. The evaluation information for the 5 attributes of 10 firms  

 1x  2x  3x  4x  5x  

1A  {0.3,0.4,0.5} {0.4,0.5} {0.8} {0.5} {0.2,0.3} 

2A  {0.4,0.6} {0.6,0.8} {0.2,0.3} {0.3,0.4} {0.6,0.7,0.9} 

3A  {0.5,0.7} {0.9} {0.3,0.4} {0.3} {0.8,0.9} 

4A  {0.3,0.4,0.5} {0.8,0.9} {0.7,0.9} {0.1,0.2} {0.9,1.0} 

5A  {0.8,1.0} {0.8,1.0} {0.4,0.6} {0.8} {0.7,0.8} 

6A  {0.4,0.5,0.6} {0.2,0.3} {0.9,1.0} {0.5} {0.3,0.4,0.5} 

7A  {0.6} {0.7,0.9} {0.8} {0.3,0.4} {0.4,0.7} 

8A  {0.9,1.0} {0.7,0.8} {0.4,0.5} {0.5,0.6} {0.7} 

9A  {0.4,0.6} {1.0} {0.6,0.7} {0.2,0.3} {0.9,1.0} 

10A  {0.9} {0.6,0.7} {0.5,0.8} {1.0} {0.7,0.8,0.9} 

 
Step 1. Calculate the correlation coefficients of the HFSs ( 1, 2, ,10)iA i =   by 

using ( )3 ,i jC A A  with the weighting vector T(0.15,0.3,0.2,0.25,0.1)w = , 

and let ( ){ }max ( ) , 1,2, ,10
j ix A jl l h x i= =  . Then the correlation matrix 

derived is: 
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1.0000 0.7984 0.6583 0.6635 0.5964 0.9104 0.7572 0.6761 0.6147 0.5983

0.7984 1.0000 0.8200 0.7139 0.6459 0.6666 0.7411 0.7458 0.7052 0.5855

0.6583 0.8200 1.0000 0.8813 0.7593 0.6082 0.8997 0.8872 0.8683 0.6757

0.6635 0.7139 0.8813

C =

1.0000 0.7423 0.6542 0.9238 0.8743 0.9306 0.6742

0.5964 0.6459 0.7593 0.7423 1.0000 0.5761 0.7737 0.8520 0.8253 0.9515

0.9104 0.6666 0.6082 0.6542 0.5761 1.0000 0.7427 0.6647 0.5816 0.6124

0.7572 0.7411 0.8997 0.9238 0.7737 0.7427 1.0000 0.9025 0.8723 0.7217

0.6761 0.7458 0.8872 0.8743 0.8520 0.6647 0.9025 1.0000 0.8617 0.8067

0.6147 0.7052 0.8683 0.9306 0.8253 0.5816 0.8723 0.8617 1.0000 0.7377

0.5983 0.5855 0.6757 0.6742 0.9515 0.6124 0.7217 0.8067 0.7377 1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Step 2. Construct the equivalent correlation matrix and obtain 
         

16 8 8C C C=   
         

1.0000 0.7984 0.7984 0.7984 0.7984 0.9104 0.7984 0.7984 0.7984 0.7984

0.7984 1.0000 0.8200 0.8200 0.8200 0.7984 0.8200 0.8200 0.8200 0.8200

0.7984 0.8200 1.0000 0.8997 0.8520 0.7984 0.8997 0.8997 0.8997 0.8520

0.7984 0.8200 0.8997 1

=

.0000 0.8520 0.7984 0.9238 0.9025 0.9306 0.8520

0.7984 0.8200 0.8520 0.8520 1.0000 0.7984 0.8520 0.8520 0.8520 0.9515

0.9104 0.7984 0.7984 0.7984 0.7984 1.0000 0.7984 0.7984 0.7984 0.7984

0.7984 0.8200 0.8997 0.9238 0.8520 0.7984 1.0000 0.9025 0.9238 0.8520

0.7984 0.8200 0.8997 0.9025 0.8520 0.7984 0.9025 1.0000 0.9025 0.8520

0.7984 0.8200 0.8997 0.9306 0.8520 0.7984 0.9238 0.9025 1.0000 0.8520

0.7984 0.8200 0.8520 0.8520 0.9515 0.7984 0.8520 0.8520 0.8520 1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

         
8C=  

         
Hence, 8C  is an equivalent correlation matrix. 

         
Step 3. For a confidence level 0λ , to do clustering for HFSs, we construct a 

0λ -cutting matrix ( )
7 7ijC cλ λ ×

= , and based on which, we get the possible 

classifications of 10 firms ( 1, 2, ,10)iA i =  , see Table 2.17 (Chen et al. 

2013a). 
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Table 2.17. The clustering result of 10 firms 

Classes Confidence levels Hesitant fuzzy clustering algorithm 

10 00.9515 1λ< ≤  
{ } { } { } { } { } { } { }1 2 3 4 5 6 7, , , , , ,A A A A A A A  

{ } { } { }8 9 10, ,A A A  

9 00.9306 0.9515λ< ≤  
{ } { } { } { } { } { }1 2 3 4 6 7, , , , ,A A A A A A  

{ } { } { }8 9 5 10, , ,A A A A  

8 00.9238 0.9306λ< ≤  
{ } { } { } { } { }1 2 3 4 9 6, , , , ,A A A A A A  

{ } { } { }7 8 5 10, , ,A A A A  

7 00.9104 0.9238λ< ≤  
{ } { } { } { }1 2 3 4 7 9, , , , ,A A A A A A  

{ } { } { }6 8 5 10, , ,A A A A  

6 00.9025 0.9104λ< ≤  
{ } { } { } { }1 6 2 3 4 7 9, , , , , ,A A A A A A A  

{ } { }8 5 10, ,A A A  

5 00.8997 0.9025λ< ≤  
{ } { } { } { }1 6 2 3 4 7 8 9, , , , , , ,A A A A A A A A  

{ }5 10,A A  

4 00.8520 0.8997λ< ≤  { } { } { } { }1 6 2 3 4 7 8 9 5 10, , , , , , , , ,A A A A A A A A A A  

3 00.8200 0.8520λ< ≤  { } { } { }1 6 2 3 4 5 7 8 9 10, , , , , , , , ,A A A A A A A A A A  

2 00.7984 0.8200λ< ≤  { } { }1 6 2 3 4 5 7 8 9 10, , , , , , , , ,A A A A A A A A A A  

1 00 0.7984λ≤ ≤  { }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,A A A A A A A A A A  

 
Under the group setting, the DMs’ evaluation information usually does not reach 

an agreement for the objects that need to be classified. Examples 2.11 and 2.12 
clearly show that the clustering algorithm based on HFSs provides a proper way to 
resolve this issue. However, it is interesting to point out that for these two real case 
studies, if adopting the conventional clustering methods within the framework of 
intuitionistic fuzzy sets and fuzzy sets, it needs to transform HFSs into fuzzy sets (or 
intuitionistic fuzzy sets), which gives rise to a difference in the accuracy of data in 
the two types, it will have an effect on the clustering results. We have actually 
performed such a clustering study by transforming the data in Tables 2.15 and 2.16 
using intuitionistic fuzzy sets and fuzzy sets, respectively. We find that the results 
are different from those obtained by using HFSs, as expected.  
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2.5   Hesitant Fuzzy Agglomerative Hierarchical Clustering 
Algorithms 

In the last decade, the research on clustering methods (Yang and Shih 2001; Fan et 
al. 2003; Mingoti and Lima 2006; Lu et al. 2008; Dong et al. 2006) has attracted 
considerable interest due to its increasing applications in various types of problems. 
The principle clustering approaches contain hierarchical algorithms, partitioning 
algorithms, and density-based algorithms, etc. The hierarchical clustering as a 
crucial method is either agglomerative or divisive. It consists of a sequence of 
iterative steps to partition at different layers. The layers are constructed by using 
merge-and-split techniques. Once a group of objects are merged or split, the next 
step will operate on the newly generated cluster (Lu et al. 2008). Hierarchical 
clustering algorithm gathers data to form a tree shaped structure, which is a widely 
used clustering technique and can be further divided into two categories: (1) 
Agglomerative methods, which proceed by making a series of merges of a 
collection of objects into more general groups; (2) Divisive methods, which 
separate the objects successively into finer groups (Tu et al. 2012). The 
agglomerative method has been more commonly used (Bordogna et al. 2006), 
which has been extensively discussed in the literature (Chaudhuri and Chaudhuri 
1995; Yager 2000; Miyamoto 2003; Cui and Chae 2011; Cilibrasia and Vitányi 
2011). However, most existing agglomerative hierarchical clustering algorithms are 
designed for clustering the real numbers and not suitable to cluster hesitant fuzzy 
information (Torra and Narukawa 2009; Torra 2010). 

Based on the traditional agglomerative hierarchical clustering algorithm 
(Miyamoto 1990), Zhang and Xu (2013) developed a hesitant fuzzy agglomerative 
hierarchical (HFAH) clustering algorithm to do clustering under hesitant fuzzy 
environments, whose steps are as follows: 

         
(Algorithm 2.4) (HFAH Clustering Algorithm) 

Step 1.  Let each of the objects ( )1, 2, ,iA i n=   be considered as a unique 

cluster 1 2{ },{ }, ,{ }nA A A , and calculate the distance ( , )ij i jd d A A=  by 

Eq.(2.12) or (2.14) and get the hesitant fuzzy distance matrix ( )ij n nH h ×= . 

Step 2. In the hesitant fuzzy distance matrix ( )ij n nH h ×= , we search the minimal 

distance ( ) ( )
1 ,

, ,min
p q

i j p qp q n
d A A d A A

≠
≤ ≤

=  and combine the clusters A  and iA  to 

form a new cluster ijA , and meanwhile calculate the center of ijA  by using 

Eq.(1.33). 

Step 3.  Update the hesitant fuzzy distance matrix by computing the distances 

between the new cluster ijA  and the other clusters. 

Step 4.  Repeat Steps 2 and 3 until all objects are in the one cluster. 
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For convenience, we express the clustering process of our algorithm above by the 
following flow chart (see Fig. 2.1) (Zhang and Xu 2013): 

         

 

Fig.2.1. The process flow chart of the HFAH clustering algorithm 

Zhang and Xu (2013) gave an example (adapted from Xu and Xia (2011b)) to 
illustrate and verify the HFAH Clustering clustering algorithm for HFSs: 

         
Example 2.13 (Zhang and Xu 2013).  Energy is an indispensable factor for the 
social and economic development of societies. Thus the correct energy policy 
affects economic development and environment, the most appropriate energy 
policy selection is very important. Suppose that there are five alternatives (energy 
projects) ( 1, 2,3, 4,5)iA i =  to be invested, and four factors to be considered: 

(1) 1x : Technological; (2) 2x : Environmental; (3) 3x : Socio-political; (4) 4x : 

Economic (more details about them can see Kahraman and Kaya 2010). The 

attribute weight vector is ( )T
0.1,0.3,0.4,0.2w = . Several DMs are invited to 

evaluate the performances of the five alternatives, and all possible evaluations for 
an alternative under each attribute can be considered as a HFE. The results 
evaluated by the DMs are listed as follows: 
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1 1 2 3 4{ ,{0.4,0.5,0.7} , ,{0.5,0.8} , ,{0.6,0.7,0.9} , ,{0.5,0.6} }A x x x x= < > < > < > < >  

2 1 2 3 4{ ,{0.6,0.7,0.8} , ,{0.5,0.6} , ,{0.4,0.6,0.7} , ,{0.4,0.5} }A x x x x= < > < > < > < >  

3 1 2 3 4{ ,{0.6, 0.8} , ,{0.2, 0.3, 0.5} , ,{0.4, 0.6} , ,{0.5, 0.7} }A x x x x= < > < > < > < >  

4 1 2 3 4{ ,{0.5,0.6,0.7} , ,{0.4,0.5} , ,{0.8,0.9} , ,{0.3,0.4,0.5} }A x x x x= < > < > < > < >  

5 1 2 3 4{ ,{0.6, 0.7} , ,{0.5, 0.7} , ,{0.7,0.8} , ,{0.2, 0.3, 0.4} }A x x x x= < > < > < > < >  

         
Obviously, the numbers of values in different HFEs are different. In order to 

more accurately calculate the distance between two HFEs, we should extend the 
shorter one until both of them have the same length when we compare them. Here, 
we consider that the DMs are pessimistic, and so we change the hesitant fuzzy data 
by adding the minimal values as below: 

         

1 1 2 3 4{ ,{0.4,0.5,0.7} , ,{0.5,0.5,0.8} , ,{0.6,0.7,0.9} , ,{0.5,0.5,0.6} }A x x x x= < > < > < > < >  

2 1 2 3 4{ ,{0.6,0.7,0.8} , ,{0.5,0.5,0.6} , ,{0.4,0.6,0.7} , ,{0.4,0.4,0.5} }A x x x x= < > < > < > < >  

3 1 2 3 4{ ,{0.6,0.6,0.8} , ,{0.2,0.3,0.5} , ,{0.4,0.4,0.6} , ,{0.5,0.5,0.7} }A x x x x= < > < > < > < >  

( ) ( ) ( )4 1 2 3 4{ ,{0.5,0.6,0.7} , , 0.4,0.4,0.5 , , 0.8,0.8,0.9 , , 0.3,0.4,0.5 }A x x x x= < > < > < > < >  

5 1 2 3 4{ ,{0.6,0.6,0.7} , ,{0.5,0.5,0.7} , ,{0.7,0.7,0.8} , ,{0.2,0.3,0.4} }A x x x x= < > < > < > < >  

         
Then we proceed to utilize Algorithm 2.4 to group these energy projects 

iA ( 1, 2, , 5)i =   as follows: 

Step 1. Let each of the energy projects ( )1, 2, ,5iA i =   be considered as a 

unique cluster 1 2 3 4 5{ },{ },{ },{ },{ }A A A A A , and calculate the distance 

ijd =  ( , )i jd A A  by Eq.(2.14) and then get the hesitant fuzzy distance matrix 

1 5 5( )ijd ×Π = : 
         

1

0.0000 0.1517 0.2324 0.1494 0.1438

0.1517 0.0000 0.1643 0.2066 0.1703

0.2324 0.1643 0.0000 0.2576 0.2394

0.1494 0.2066 0.2576 0.0000 0.1278

0.1438 0.1703 0.2394 0.1278 0.0000

 
 
 
 Π =
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Step 2.  In the hesitant fuzzy distance matrix 1Π , we search the smallest distance 

( )min ,i jd A A ( )4 5, 0.1278d A A= = , then combine 4{ }A  and 5{ }A  to form 

a new cluster 4 5{ , }A A . So the energy projects ( )1, 2, ,5iA i =   can be 

clustered into the following four clusters: 1 2 3 4 5{ },{ },{ },{ , }A A A A A , and 

compute the center of each new cluster by using Eq.(1.33): 
         

( ) {4 5 45 4 5 1{ , } , ,{0.8,0.85,0.84,0.88,0.91} ,c A A A f A A x= = = < >  

2 ,{0.7,0.75,0.82,0.85} ,x< >  3 ,{0.94,0.96,0.97,0.98} ,x< >  

}4 ,{0.44,0.51,0.52,0.58,0.6,0.64,0.65,0.7}x< >  

         

1 1{ }c A A= , 2 2{ }c A A= , 3 3{ }c A A=  

         
Step 3.  Update the hesitant fuzzy distance matrix by computing the distances 

between the cluster 4 5{ , }A A  and the other clusters 1 2 3{ },{ },{ }A A A , 

respectively. 
Due to that the numbers of values in different HFEs are different, and according 

to the regulations given by Xu and Xia (2011b), we consider that the DMs are 

pessimistic, and change the hesitant fuzzy data 1A , 2A  and 3A  by adding the 

minimal values as below: 

1 1 2{ ,{0.4, 0.4, 0.4, 0.5, 0.7} , ,{0.5, 0.5, 0.5, 0.8} ,A x x= < > < >  

3 4,{0.6,0.6,0.7,0.9} , ,{0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.6} }x x< > < >  

2 1 2{ ,{0.6, 0.6, 0.6, 0.7, 0.8} , ,{0.5, 0.5, 0.5, 0.6} ,A x x= < > < >  

3 4,{0.4,0.4,0.6,0.7} , ,{0.4,0.4,0.4,0.4,0.4,0.4,0.4,0.5} }x x< > < >  

3 1 2{ ,{0.6, 0.6, 0.6, 0.6, 0.8} , ,{0.2, 0.2, 0.3, 0.5} ,A x x= < > < >  

3 4,{0.4,0.4,0.4,0.6} , ,{0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.7} }x x< > < >  
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Then we compute the distances between 45A  and 1A , 2A , 3A , respectively, 

and get ( )1 45,d A A = 0.2071 , ( )2 45, 0.2649d A A = , ( )3 45, 0.3596d A A = , and 

update the hesitant fuzzy distance matrix as follow: 
         

2

0.0000 0.1517 0.2324 0.2071

0.1517 0.0000 0.1643 0.2649

0.2324 0.1643 0.0000 0.3596

0.2071 0.2649 0.3596 0.0000

 
 
 Π =
 
 
 

 

         
Step 4. Check whether all objects are in the one cluster; If not, then we repeat Steps 

2 and 3. 

Since there are still four clusters 1 2 3 4 5{ },{ },{ },{ , }A A A A A , we repeat 

Steps 2 and 3 as follows: 

In the hesitant fuzzy distance matrix 2Π , we find the smallest distance 

( )min ,i jd A A = ( )1 2, 0.1527d A A = , then combine 1{ }A  and 2{ }A  to form 

a new cluster 1 2{ , }A A . So the energy projects ( )1,2, ,5iA i =   can be 

clustered into the following three clusters 1 2 3 4 5{ , },{ },{ , }A A A A A , and then 

compute the center of each new cluster by using Eq.(1.33): 
         

( )1 2 12 1 2{ , } ,c A A A f A A= =

{ 1,{0.76,0.8,0.82,0.88,0.85,0.9,0.91,0.94} ,x= < >

2 ,{0.75,0.8,0.9,0.92} ,x< >     

  3,{0.76,0.82,0.84,0.88,0.91,0.94,0.96,0.97} ,x< >   

  
}4 ,{0.7,0.75,0.75,0.76,0.8}x< >  

4 5 45{ , }c A A A= , 3 3{ }c A A=   

         
After that, we continue to compute the distances between 4 5{ , }A A  and 

1 2{ , }A A , 1 2{ , }A A  and 3{ }A , as well as 4 5{ , }A A  and 3{ }A , then we get  
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( )1 2 3{ , }, { } 0.434d c A A c A =  , ( )1 2 4 5{ , }, { , }d c A A c A A  0.0967=  

( )3 4 5{ }, { , }d c A c A A  0.3596=  
         

and update the hesitant fuzzy distance matrix as follow: 
         

3

0.0000 0.4340 0.0967

0.4340 0.0000 0.3596

0.0967 0.3596 0.0000

 
 Π =  
 
 

 

         
However, there are still three clusters 1 2 3 4 5{ , },{ },{ , }A A A A A , so we 

continue to repeat Steps 2 and 3 as follows: 

In the hesitant fuzzy distance matrix 3Π , we can find the smallest  

distance ( )min ,i jd A A ( )12 45, 0.0967d A A= = , then combine 1 2{ , }A A  and 

4 5{ , }A A  to form a new cluster 1245 1 2 4 5{ , , , }A A A A A= . So the energy 

projects ( 1, 2,iA i =  ,5 ) can be clustered into the following two clusters 

3 1 2 4 5{ },{ , , , }A A A A A . 

{ }1 2 3 4 5, , , ,A A A A A

{ }1 2 4 5, , ,A A A A

{ }1 2,A A
{ }4 5,A A

{ }4A { }5A{ }2A{ }1A { }3A

 

Fig.2.2. Classification of the energy projects ( 1, 2,3, 4,5)iA i =
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Finally, the above two clusters can be further clustered into a unique cluster 

1 2 3 4 5{ , , , , }A A A A A , and all the above processes can be shown as in Fig. 2.2 

(Zhang and Xu 2013). 
In order to compare with the intuitionistic fuzzy hierarchical (IFH) clustering 

algorithm (Xu 2009a), we consider the HFSs’ envelopes, i.e., intuitionistic fuzzy 

data (Chen 2012), and make intuitionistic fuzzy hierarchical clustering analysis: 

According to Definition 1.6, the IFN ( )env hα  is the envelope of the HFE h , 

then we can transform the hesitant fuzzy data of Example 2.13 into the intuitionistic 

fuzzy data { ( ), ( ) | } ( 1,2,3,4,5)i j j jA x v x x X iμ= < > ∈ = , where  
         

( ) ( ) ( ) ( ){ }1 1 2 3 4, 0.4,0.3 , , 0.5,0.2 , , 0.6,0.1 , , 0.5,0.4A x x x x= < > < > < > < >

( ) ( ) ( ) ( ){ }2 1 2 3 4, 0.6,0.2 , , 0.5,0.4 , , 0.4,0.3 , , 0.4,0.5A x x x x= < > < > < > < >

( ) ( ) ( ) ( ){ }3 1 2 3 4, 0.6,0.2 , , 0.2,0.5 , , 0.4,0.6 , , 0.5,0.3A x x x x= < > < > < > < >

( ) ( ) ( ) ( ){ }4 1 2 3 4, 0.5,0.3 , , 0.4,0.5 , , 0.8,0.1 , , 0.3,0.5A x x x x= < > < > < > < >

( ) ( ) ( ) ( ){ }5 1 2 3 4, 0.6,0.3 , , 0.5,0.3 , , 0.7,0.2 , , 0.2,0.6A x x x x= < > < > < > < >  

         
and then the energy projects ( 1, 2,3, 4,5)iA i =  can be clustered as the 

following intuitionistic fuzzy hierarchical clustering algorithm (Xu 2009a): 
         

Step 1. Let each of the energy projects ( 1, 2,3, 4,5)iA i =  be considered as a 

unique cluster 1 2 3 4 5{ },{ },{ },{ },{ }A A A A A , and calculate the distance 

( , )ij i jd d A A=  by the following distance measure: 
         

( )2 2 2

1

1
( , ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))

2 i j i j i j

n

i j k A k A k A k A k A k A k
k

d A A w x x v x v x x xμ μ π π
=

= − + − + −  (2.186) 

         
where the weight vector of the attributes ( 1, 2,3, 4)jx j =  is 

( )T
0.1,0.3,0.4,0.2w= , and we get the intuitionistic fuzzy distance matrix 

1 5 5( )ijd ×Π = : 
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1

0.0000 0.1817 0.2449 0.2098 0.2214

0.1817 0.0000 0.1761 0.2324 0.2145

0.2449 0.1761 0.0000 0.2702 0.2608

0.2098 0.2324 0.2702 0.0000 0.1549

0.2214 0.2145 0.2608 0.1549 0.0000

 
 
 
 Π =
 
 
 
 

 

         
Step 2. In the intuitionistic fuzzy distance matrix 1Π , we search the smallest 

distance ( ) ( )min 5 4 5, , 0.1278i jd A A d A A= = , and then combine 4{ }A  and 

5{ }A  to form a new cluster 4 5{ , }A A ; So the energy projects 

( 1, 2,3, 4,5)jA j =  can be clustered into the following four clusters: 

1 2 3 4 5{ },{ },{ },{ , }A A A A A , and compute the center of each new cluster by the 

following average operation : 

1 2( , , , )nf A A A  1 1

1 1

,1 (1 ( )) , ( ( ))n n

i i

n n

j A j A j j
i i

x x v x x Xm
= =

ì üï ïï ï= < - - > Îí ýï ïï ïî þ
  (2.187) 

So we can get the center of each new cluster: 
         

( )4 5 45 4 5{ , } ,c A A A f A A= =  

{ 1 2, (0.5528,0.3) , , (0.4523,0.3873) ,x x= < > < >  

        
}3 4, (0.7551,0.1414) , , (0.2517,0.5477)x x< > < >   

1 1{ }c A A= , 2 2{ }c A A= , 3 3{ }c A A=   

         
Step 3. Update the intuitionistic fuzzy distance matrix by computing the distances 

between the cluster 4 5{ , }A A  and the other clusters 1 2 3{ },{ },{ }A A A , 

respectively. 
         

2

0.0000 0.1817 0.2449 0.1819

0.1817 0.0000 0.1761 0.2075

0.2449 0.1761 0.0000 0.2605

0.1819 0.2075 0.2605 0.0000

 
 
 Π =
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Step 4.  Repeat Steps 2 and 3 until only one cluster remains. 

Obviously, there are still four clusters 1 2 3 4 5{ },{ },{ },{ , }A A A A A , we 

repeat Steps 2 and 3: 

In the intuitionistic fuzzy distance matrix 2Π , we find the smallest distance 

( )min ,i jd A A ( )5 2 3, 0.1761d A A= = , then combine 2{ }A  and 3{ }A  to 

form a new cluster 2 3{ , }A A . So the energy projects ( )1,2, ,5iA i =   can be 

clustered into the following three clusters 1 2 3{ },{ , },A A A 4 5{ , }A A , and then 

compute the center of 2 3{ , }A A  by using Eq.(2.187): 
         

( )2 3 23 2 3{ , } ,c A A A f A A= =  

{ 1 2 3, (0.6,0.2) , , (0.3675,0.4472) , , (0.4,0.3464) ,x x x= < > < > < >
 

}4 , (0.4523,0.3873)x< >  

         

1 1{ }c A A= , 4 5 45{ , }c A A A=  

         
After that, we compute the distances between 4 5{ , }A A  and 2 3{ , }A A , 

2 3{ , }A A  and 1{ }A , as well as 4 5{ , }A A  and 1{ }A , and update the 

intuitionistic fuzzy distance matrix as follow: 
         

3

0.0000 0.1948 0.1819

0.1948 0.0000 0.2176

0.1819 0.2176 0.0000

 
 Π =  
 
 

 

         
However, there are still three clusters 1 2 3 4 5{ },{ , },{ , }A A A A A , so we 

continue to repeat Steps 2 and 3 as follows: 

In the intuitionistic fuzzy distance matrix 3Π , we find the smallest distance 

( )min ,i jd A A ( )5 1 45, 0.1819d A A= = , then combine 1{ }A  and 4 5{ , }A A  to 

form a new cluster 145 1 4 5{ , , }A A A A= . So the energy projects 

( )1, 2, ,5iA i =   can be clustered into the following two clusters 2 3{ , }A A  

and 1 4 5{ , , }A A A . 
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{ }1 2 3 4 5, , , ,A A A A A

{ }1 4 5, ,A A A

{ }2 3,A A { }4 5,A A

{ }4A { }5A{ }3A{ }2A { }1A

 

Fig.2.3. Classification of the energy projects ( 1, 2,3, 4,5)iA i =  

At length, the above two clusters 2 3{ , }A A  and 1 4 5{ , , }A A A  can be 

further clustered into a unique cluster 1 2 3 4 5{ , , , , }A A A A A , and all the above 

processes can be shown as in Fig. 2.3 (Zhang and Xu 2013). 
Moreover, Miyamoto (2003) also proposed a fuzzy multiset model for 

information clustering and applied this model in information retrieval on the World 
Wide Web. In his research, three classical clustering methods including the hard 
c-means algorithm, the fuzzy c-means algorithm and the agglomerative hierarchical 
algorithm were extended into clustering the fuzzy multiset information. Here we 
just make a comparison with the fuzzy multiset agglomerative hierarchical (FMAH) 
algorithm of Miyamoto (2003), which is the closest to Algorithm 2.4. Namely, we 
consider that the data of Example 2.13 are expressed by fuzzy multisets instead of 
HFSs. As Torra (2010) pointed out that all HFSs can be represented as fuzzy 
multisets, thus we also regard the data information of Example 2.13 as fuzzy 
multiset information and utilize the FMAH clustering algorithm (Miyamoto 2003) 

to group these energy projects ( 1, 2, ,5)iA i =  , then we have the following 

clustering results as in Table 2.18 (In order to provide a better view of the 
comparison results, we also put the clustering results of the other two algorithms 
into Table 2.18). 
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Table 2.18. Clustering results 

Classes HFAH clustering Algorithm IFH clustering algorithm FMAH clustering algorithm 

5 1 2 3 4 5{ },{ },{ },{ },{ }A A A A A 1 2 3 4 5{ },{ },{ },{ },{ }A A A A A 1 2 3 4 5{ },{ },{ },{ },{ }A A A A A  

4 1 2 3 4 5{ },{ },{ },{ , }A A A A A 1 2 3 4 5{ },{ },{ },{ , }A A A A A 1 2 3 4 5{ },{ },{ },{ , }A A A A A
 

3 1 2 3 4 5{ , },{ },{ , }A A A A A 1 2 3 4 5{ },{ , },{ , }A A A A A 1 3 2 4 5{ },{ },{ , , }A A A A A
 

2 3 1 2 4 5{ },{ , , , }A A A A A  2 3 1 4 5{ , },{ , , }A A A A A  
3 1 2 4 5{ },{ , , , }A A A A A

 

1 1 2 3 4 5{ , , , , }A A A A A  1 2 3 4 5{ , , , , }A A A A A  1 2 3 4 5{ , , , , }A A A A A
 

 
In Table 2.18, we see that the clustering results between the HFAH clustering 

algorithm and the IFH algorithm are quite different. The main reason is that the 
HFAH clustering algorithm clusters the fuzzy information which is represented by 
several possible values, not by a margin of error (as in intuitionistic fuzzy sets), 
while if adopting the intuitionistic fuzzy hierarchical clustering algorithm, it needs 
to transform HFSs into intuitionistic fuzzy sets, which gives rise to a difference in 
the accuracy of data in the two types, it will have an effect on the clustering results. 
Meanwhile, through Table 2.18, we also note that the clustering results of the 
FMAH algorithm are different from the results derived by the HFAH algorithm. 
The reason is that although HFS can be represented as fuzzy multisets, their 
interpretations (practical significances) and their operations are different (Torra 
2010). Thus, we cannot apply directly the IFH (or FMAH) algorithm to cluster  
data represented by HFSs. Apparently, when we meet some situations where  
the information is represented by several possible values, the HFAH  
clustering algorithm demonstrates its great superiority in clustering those hesitant 
fuzzy data. 

Nevertheless, we cannot claim that our method produces a better solution for 
different clustering data because different clustering methods have their own 
advantages in dealing with different types of data. For the sake of knowing the  
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advantages of Algorithm 2.4 over the existing algorithms which also handle hesitant 
fuzzy information, we furthermore compare our technique with Chen et al. 
(2013a)’s method using another example (adapted from Chen et al. (2013a)): 

         
Example 2.14 (Zhang and Xu 2013).  The assessment of business failure risk, i.e., 
the assessment of enterprise performance and the prediction of failure events has 
drawn the attention of many researchers in recent years. For this purpose, ten 

enterprises ( 1,2, ,10)iA i =   evaluated on five attributes ( 1 :x  managers work 

experience, 2 :x  profitability, 3 :x  operating capacity, 4 :x  debt-paying ability, 

and 5 :x  market competition) will be classified according to their risk of failure 

and also assume that the weighting vector of five attributes is 
T(0.15,0.3,0.2,0.25,0.1)w = . In order to better make the assessment, several 

risk evaluation organizations are requested. The normalized evaluation data, 
represented by HFEs, are displayed in Table 2.19 (Zhang and Xu 2013): 

Table 2.19. The evaluation information for the five attributes of ten enterprises  

 1x  2x  3x  4x  5x  

1A  {0.3,0.4,0.5} {0.4,0.5} {0.8} {0.5} {0.2,0.3} 

2A  {0.4,0.6} {0.6,0.8} {0.2,0.3} {0.3,0.4} {0.6,0.7,0.9} 

3A  {0.5,0.7} {0.9} {0.3,0.4} {0.3} {0.8,0.9} 

4A  {0.3,0.4,0.5} {0.8,0.9} {0.7,0.9} {0.1,0.2} {0.9,1.0} 

5A  {0.8,1.0} {0.8,1.0} {0.4,0.6} {0.8} {0.7,0.8} 

6A  {0.4,0.5,0.6} {0.2,0.3} {0.9,1.0} {0.5} {0.3,0.4,0.5} 

7A  {0.6} {0.7,0.9} {0.8} {0.3,0.4} {0.4,0.7} 

8A  {0.9,1.0} {0.7,0.8} {0.4,0.5} {0.5,0.6} {0.7} 

9A  {0.4,0.6} {1.0} {0.6,0.7} {0.2,0.3} {0.9,1.0} 

10A  {0.9} {0.6,0.7} {0.5,0.8} {1.0} {0.7,0.8,0.9} 
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With the HFAH clustering algorithm, we have the following clustering results as 
in Table 2.20. However, if we use Chen et al. (2013a)’s method (Algorithm-HFSC), 
we first need to construct the hesitant fuzzy correlation matrix based on the data in 
Table 2.19: 

 

1.0000 0.7984 0.6583 0.6635 0.5964 0.9104 0.7572 0.6761 0.6147 0.5983

0.7984 1.0000 0.8200 0.7139 0.6459 0.6666 0.7411 0.7458 0.7052 0.5855

0.6583 0.8200 1.0000 0.8813 0.7593 0.6082 0.8997 0.8872 0.8683 0.6757

0.6635 0.7139 0.8813

C =

1.0000 0.7423 0.6542 0.9238 0.8743 0.9306 0.6742

0.5964 0.6459 0.7593 0.7423 1.0000 0.5761 0.7737 0.8520 0.8253 0.9515

0.9104 0.6666 0.6082 0.6542 0.5761 1.0000 0.7427 0.6647 0.5816 0.6124

0.7572 0.7411 0.8997 0.9238 0.7737 0.7427 1.0000 0.9025 0.8723 0.7217

0.6761 0.7458 0.8872 0.8743 0.8520 0.6647 0.9025 1.0000 0.8617 0.8067

0.6147 0.7052 0.8683 0.9306 0.8253 0.5816 0.8723 0.8617 1.0000 0.7377

0.5983 0.5855 0.6757 0.6742 0.9515 0.6124 0.7217 0.8067 0.7377 1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
In order to get the clustering result with Chen et al. (2013a)’s method, we 

should get the equivalent correlation matrix. By the composition operation of 
correlation matrices, we have 

16 8 8C C C=   

1.0000 0.7984 0.7984 0.7984 0.7984 0.9104 0.7984 0.7984 0.7984 0.7984

0.7984 1.0000 0.8200 0.8200 0.8200 0.7984 0.8200 0.8200 0.8200 0.8200

0.7984 0.8200 1.0000 0.8997 0.8520 0.7984 0.8997 0.8997 0.8997 0.8520

0.7984 0.8200 0.8997 1

=

.0000 0.8520 0.7984 0.9238 0.9025 0.9306 0.8520

0.7984 0.8200 0.8520 0.8520 1.0000 0.7984 0.8520 0.8520 0.8520 0.9515

0.9104 0.7984 0.7984 0.7984 0.7984 1.0000 0.7984 0.7984 0.7984 0.7984

0.7984 0.8200 0.8997 0.9238 0.8520 0.7984 1.0000 0.9025 0.9238 0.8520

0.7984 0.8200 0.8997 0.9025 0.8520 0.7984 0.9025 1.0000 0.9025 0.8520

0.7984 0.8200 0.8997 0.9306 0.8520 0.7984 0.9238 0.9025 1.0000 0.8520

0.7984 0.8200 0.8520 0.8520 0.9515 0.7984 0.8520 0.8520 0.8520 1.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

8C=  

 
Then, we can make clustering analysis with Chen et al. (2013a)’s method and at 

the same time get the possible classifications of ten firms ( 1, 2, ,10)iA i =  , 

listed in Table 2.20 (Zhang and Xu 2013). 
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Table 2.20. Clustering results 

Classes HFAH clustering Algorithm Algorithm-HFSC 

10 { } { } { } { } { } { }1 2 3 4 5 6, , , , , ,A A A A A A

{ } { } { } { }7 8 9 10, , ,A A A A  

{ } { } { } { } { } { }1 2 3 4 5 6, , , , , ,A A A A A A  

{ } { } { } { }7 8 9 10, , ,A A A A  

9 { } { } { } { } { } { }1 2 3 5 6 7, , , , , ,A A A A A A

{ } { } { }8 10 4 9, , ,A A A A  

{ } { } { } { } { } { }1 2 3 4 6 7, , , , , ,A A A A A A  

{ } { } { }8 9 5 10, , ,A A A A  

8 
{ } { } { } { } { } { }1 2 3 6 7 8, , , , , ,A A A A A A

{ } { }4 9 5 10, , ,A A A A  

{ } { } { } { } { } { }1 2 3 6 7 8, , , , , ,A A A A A A  

{ } { }4 9 5 10, , ,A A A A  

7 
{ } { } { } { } { }1 2 3 6 7 8, , , , , ,A A A A A A

{ } { }4 9 5 10, , ,A A A A  

{ } { } { } { } { }1 2 3 6 8, , , , ,A A A A A  

{ } { }4 7 9 5 10, , , ,A A A A A  

6 
{ } { } { } { }2 3 1 6 8, , , , ,A A A A A  

{ } { }4 7 9 5 10, , , ,A A A A A  

{ } { } { } { }2 3 8 1 6, , , ,A A A A A  

{ } { }4 7 9 5 10, , , ,A A A A A  

5 
{ } { } { }2 3 1 6 8, , , , ,A A A A A  

{ } { }4 7 9 5 10, , , ,A A A A A  

{ } { } { }2 3 1 6, , , ,A A A A  

{ } { }4 7 8 9 5 10, , , , ,A A A A A A  

4 { } { } { } { }1 6 8 2 3 4 7 9 5 10, , , , , , , , ,A A A A A A A A A A
{ } { } { }2 1 6 3 4 7 8 9, , , , , , , ,A A A A A A A A

 
{ }5 10,A A  

3 { } { } { }1 6 8 2 3 4 5 7 9 10, , , , , , , , ,A A A A A A A A A A
{ } { }2 1 6, , ,A A A

 
{ }3 4 5 7 8 9 10, , , , , ,A A A A A A A  

2 { } { }1 6 2 3 4 5 7 8 9 10, , , , , , , , ,A A A A A A A A A A { } { }1 6 2 3 4 5 7 8 9 10, , , , , , , , ,A A A A A A A A A A  

1 { }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,A A A A A A A A A A { }1 2 3 4 5 6 7 8 9 10, , , , , , , , ,A A A A A A A A A A  
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We can see from Table 2.20 that the clustering results of our algorithm are very 
little different from the results by using the Algorithm-HFSC (Chen et al. 2013a). 
Especially when the numbers of clusters of the clustering results in Example 2.14 

are equal to ( )1,2,8,10k k = , the results of those two algorithms are exactly the 

same. Meanwhile, it is not hard to see that our algorithm has some desirable 
advantages over Algorithm-HFSC. Firstly, the HFAH clustering algorithm requires 
much less computational efforts. Because it is based on the conventional 
agglomerative hierarchical clustering procedure, the hesitant fuzzy aggregation 
operator, and the hesitant fuzzy distance measure, which does not need to calculate 
the equivalent association matrix, while Chen et al. (2013a)’s method, as its 
calculation process mentioned above, needs to transform the hesitant fuzzy 
correlation matrix into the equivalent correlation matrix, which requires lots of 
computational efforts. Let m  and n  represent the number of alternatives and 
attributes, respectively. Then the computational complexities of our method and 

Chen et al. (2013a)’s method are 2( 12 )O mn n+  and 2 2( 12 )O mn n kn+ + , 

respectively, where ( )2k k ≥  represents the transfer times until we get the 

equivalent matrix. The elapsed time may become closed as n increases. Considering 
the practical application, we think the HFAH clustering algorithm can save much 
more time and computational efforts. Secondly, the Algorithm-HFSC (Chen et al. 
2013a) needs to transform the hesitant fuzzy association coefficients matrix into a 
hesitant fuzzy equivalent association matrix, some information maybe missing 
during this process, namely, the hesitant fuzzy equivalent association matrix cannot 
reflect all the information that the hesitant fuzzy association coefficients matrix 
contains. Thus, we can very confidently say that the HFAH clustering algorithm 
makes the clustering process more effective and needs less computational efforts, 
and meanwhile, the HFAH clustering algorithm offers a flexible, non-parametric 
approach for clustering HFSs. In addition, the ultimate clustering results of 
Algorithm 2.4 can be represented by the dendrogram, which provides very 
informative description and a visualization of the potential data clustering 
structures, especially when real hierarchical relations exist in the data, such as the 
data from evolutionary research on different species of organisms, or other 
applications in medicine, biology and archaeology (Everitt et al. 2001). 

2.6   Hierarchical Hesitant Fuzzy K-means Clustering 
Algorithm 

K-means is one of the latter principle representatives. The procedure of K-means 
algorithm is as follows (Pena et al. 1999): First, select somehow an initial partition 
of the database in the K clusters and calculate the centroid of each cluster, or select 
the initial seeds randomly, and then all the objects are compared with each 
centroid by means of the distance and assigned to the closest cluster. The above  
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steps are repeated many times until the changes in the cluster centers from one 
stage to the next are close to zero or smaller than a pre-specified value. K-means 
algorithm (HilalInana and Kuntalp 2007; Pena et al. 1999; Tokushige et al. 2007; 
Pop and Sarbu 1997) is of robustness, and its sensitivity to initial environment, i.e., 
initial cluster or initial seeds, has been discussed (Sun et al. 2002; Mingoti and Lima 
2006; Pena et al. 1999; Khan and Ahmad 2004). At present, clustering algorithms 
usually assume that appropriate initial cluster centers can be found in advance, 
however, there has been, as of now, no universal methods to determine the initial 
cluster centers (Pena et al. 1999). In this section we shall utilize the results of 
hierarchical clustering as an initial cluster for HFSs.   

        
(Algorithm 2.5) (K-Means Clustering) (Chen et al. 2014) 

         
Step 1.  Give the number of cluster. 

         
Step 2.  Select the results of Algorithm 2.4 as initial clusters, and calculate initial 

cluster centroids by Eq.(1.33). 

         

Step 3.  Calculate the distances between HFSs iA ( 1,2, , )i n=   and centroids by 

Eq.(2.12) or Eq.(2.14); Assign iA  to the closest centroid.  

         
Step 4.  Recalculate the centroids of the clusters.     

         
Step 5.  Repeat Steps 2 and 3 until the centroids stabilize.  

         
         

Example 2.15 (Chen et al. 2014).  An enterprise puts forward five kinds of 

marketing programs ( 1, 2, , 5)iA i =   for new products. Some DMs evaluate 

these programs from eight aspects on the basis of their familiar fields. These eight 

aspects are denoted with the feature space 1 2 8{ , , , }X x x x=  , and their weight 

vector is (0.15,0.10,0.12,0.15,0.10,0.13,0.14,0.11)w Τ= . Suppose that 

various DMs give different values for a certain attribute of a program, we employ 

HFSs (for convenience, we also denote them by ( 1, 2, , 5)iA i =  ) to represent 

the evaluated information over the five kinds of marketing programs. The 
corresponding data are listed in Table 2.21 (Chen et al. 2014). 
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Table 2.21. Hesitant fuzzy evaluated information 

 
1x  2x  3x  4x  

1A  {0.2,0.3.0.5} {0.1,0.2} {0.5,0.6,0.7} {0.9,0.95,1} 

2A  {0.5,0.6} {0.6,0.7,0.85} {1} {0.15,0.2,0.35} 

3A  {0.45,0.5,0.65} {0.6,0.7} {0.9,0.95,1} {0.1,0.15,0.2} 

4A  {1} {1} {0.85,0.9} {0.75,0.8,0.85} 

5A  {0.9,0.95,1} {0.9} {0.8,0.85,0.9} {0.7,0.75,0.8} 

 

 
5x  6x  7x  8x  

1A  {0.4,0.5,0.65} {0.1} {0.3,0.4,0.5} {1} 

2A  {0,0.1,0.2} {0.7,0.8,0.85} {0.5,0.6,0.7} {0.65,0.7,0.8} 

3A  {0.2,0.3} {0.6,0.7,0.8} {0.15,0.2} {0.2,0.3,0.35} 

4A  {0.2} {0.15} {0.1,0.2,0.3} {0.3} 

5A  {0.5,0.6,0.85} {0.3,0.35} {0.15,0.2,0.25} {0.4,0.5,0.7} 

 
Then we use first use the agglomerative hierarchical clustering to classify the 

five types of marketing programs:  
         

Step 1. In this step, each of the HFSs ( 1, 2, ,5)jA j =   is considered as a 

unique cluster: 1 2 3 4{ }, { }, { }, { }A A A A    and 5{ }A . 

         
Step 2. Compare each of the HFSs ( 1, 2, ,5)jA j =   with all the other four 

HFSs using the hesitant weighted Hamming distance (2.12): 
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12 1 2 12 2 1( , ) ( , ) 0.4335d A A d A A= = , 12 1 3 12 3 1( , ) ( , ) 0.4598d A A d A A= =  

12 1 4 12 4 1( , ) ( , ) 0.3827d A A d A A= = , 12 1 5 12 5 1( , ) ( , ) 0.3494d A A d A A= =  

12 2 3 12 3 2( , ) ( , ) 0.1643d A A d A A= = , 12 2 4 12 4 2( , ) ( , ) 0.3900d A A d A A= =  

12 2 5 12 5 2( , ) ( , ) 0.3682d A A d A A= = , 12 3 4 12 4 3( , ) ( , ) 0.3038d A A d A A= =  

12 3 5 12 5 3( , ) ( , ) 0.3132d A A d A A= = , 12 4 5 12 5 4( , ) ( , ) 0.1251d A A d A A= =  

         
Then 

12 1 5 12 1 2 12 1 3 12 1 4 12 1 5( , ) min{ ( , ), ( , ), ( , ), ( , )} 0.3494d A A d A A d A A d A A d A A= =  

12 2 3 12 2 1 12 2 3 12 2 4 12 2 5( , ) min{ ( , ), ( , ), ( , ), ( , )} 0.1643d A A d A A d A A d A A d A A= =  

12 4 5 12 4 1 12 4 2 12 4 3 12 4 5( , ) min{ ( , ), ( , ), ( , ), ( , )} 0.1251d A A d A A d A A d A A d A A= =  

         
Considering that only two clusters can be jointed in each step, the HFSs 

( 1,2, ,5)jA j =   are thus clustered into the following four clusters: 

1 2{ }, { },A A  3{ }A  and 4 5{ , }A A . 
         

Step 3. Calculate the center of each cluster using Eq.(1.33): 
         

1 1 2 2 3 3{ } , { } , { }c A A c A A c A A= = =    

4 5 4 5{ , } ( , }c A A f A A=  

1 2 3{ ,{1} , ,{1} , ,{0.9 , 0.8586 , 0.8775 , 0.85 , 0.8268} ,x x x= < > < > < >  
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4 ,{0.8268 , 0.8064 , 0.7879 , 0.8 , 0.7551, 0.7764 , 0.75 , 0.7261} ,x< >  

5 6,{0.6536 , 0.4343 , 0.3675} , ,{0.2567 , 0.2286}x x< >  < > , 

7,{0.2754 , 0.2517 , 0.2286 , 0.2254 , 0.2 , 0.1754 , 0.1784 , 0.1515 , 0.1254} ,x< >  

8 ,{0.5417 , 0.4084 , 0.3519} }x< >  

         
Comparing each cluster with the other three clusters with the hesitant weighted 

Hamming distance (Eq.(2.12)), we have 
         

12 1 2 12 2 1( , ) ( , ) 0.4335d A A d A A= = , 12 1 3 12 3 1( , ) ( , ) 0.4598d A A d A A= =  

12 1 4 5 12 4 5 1( , { , }) ( { , }, ) 0.3450d A c A A d c A A A= =  , 

12 2 3 12 3 2( , ) ( , ) 0.1643d A A d A A= =  

12 2 4 5 12 4 5 2( , { , }) ( { , }, ) 0.3889d A c A A d c A A A= =   

12 3 4 5 12 4 5 3( , { , }) ( { , }, ) 0.3211d A c A A d c A A A= =   

Then the HFSs ( 1, 2, , 5)jA j =   are clustered into the following three 

clusters: 1{ }A , 2 3{ , }A A  and 4 5{ , }A A . 
         

Step 4. Calculate the center of each cluster by using Eq.(1.33): 
         

1 1{ }c A A=  

2 3 2 3 1{ , } ( , } { ,{0.6258 , 0.5528 , 0.5310 , 0.5817 , 0.5 , 0.4756} ,c A A f A A x= = < >  

2 3,{0.7879 , 0.7551, 0.7 , 0.6536 , 0.6} , ,{1}x x< > < > , 
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4 ,{0.2789 ,0.2567 , 0.2351, 0.2 , 0.1754 , 0.1515 , 0.15, 0.1254} ,x< >  

5 ,{0.2517 , 0.2 , 0.2063 , 0.1515 , 0.1633 , 0.1056} ,x< >  

6 ,{0.8268 , 0.7879 , 0.7551, 0.8 , 0.7172 , 0.7 , 0.6536} ,x< >  

7 ,{0.5101, 0.4950 , 0.4343 , 0.4169 , 0.3675 , 0.3481} ,x< >  

8,{0.6394 , 0.6258 , 0.6 , 0.5584 , 0.5417 , 0.5101, 0.5230 , 0.5050 ,0.4708} }x< >  

         

4 5 4 5{ , } ( , }c A A f A A=  

1 2 3{ ,{1} , ,{1} , ,{0.9 , 0.8586 , 0.8775 , 0.85 , 0.8268} ,x x x= < > < > < >  

4 ,{0.8268 , 0.8064 , 0.7879 , 0.8 , 0.7551, 0.7764 , 0.75 , 0.7261} ,x< >  

5 6,{0.6536 , 0.4343 , 0.3675} , ,{0.2567 , 0.2286}x x< >  < > , 

7 ,{0.2754 , 0.2517 , 0.2286 , 0.2254 , 0.2 , 0.1754 , 0.1784 , 0.1515 , 0.1254} ,x< >  

8 ,{0.5417 , 0.4084 , 0.3519} }x< >  

         
Subsequently, we compare each cluster with the other two clusters by Eq.(1.12): 

         

12 1 2 3 12 2 3 1( { }, { , }) ( { , }, { }) 0.4283d c A c A A d c A A c A= =     

12 1 4 5 12 4 5 1( { }, { , }) ( { , }, { }) 0.3440d c A c A A d c A A c A= =     

12 2 3 4 5 12 4 5 2 3( { , }, { , }) ( { , }, { , }) 0.3411d c A A c A A d c A A c A A= =     

Then the HFSs ( 1,2, ,5)jA j =   can be clustered into the following two 

clusters: 1{ }A  and 2 3 4 5{ , , , }A A A A . 
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Finally, the above two clusters are further clustered into a unique cluster: 

1 2 3 4 5{ , , , , }A A A A A . 

If we carry out K-means clustering, then we should choose the results of 
hierarchical clustering as initial clusters. Since the results at 1K =  and 5K =  
are unique, we shall illustrate Algorithm 2.5 with 2,3,4K = .  

(1) 4K = : Using the result obtained from hierarchical clustering 1 2{ },{ },A A  

3{ }A  and 4 5{ , }A A  as the initial cluster to compute the centroids and distances. 

1 1 2 2 3 3 4 5 4 5{ } , { } , { } , { , } ( , )c A A c A A c A A c A A f A A=  =  =  =     

( ) ( )12 1 1 12 1 2, { } 0, , { } 0.4335d A c A d A c A= =   

( ) ( )12 1 3 12 1 4 5, { } 0.4598, , { , } 0.3450d A c A d A c A A= =   

( ) ( )12 2 1 12 2 2, { } 0.4335, , { } 0d A c A d A c A= =   

( ) ( )12 2 3 12 2 4 5, { } 0.1643, , { , } 0.3889d A c A d A c A A= =   

( ) ( )12 3 1 12 3 2, { } 0.4598, , { } 0.1643d A c A d A c A= =   

( ) ( )12 3 3 12 3 4 5, { } 0, , { , } 0.3211d A c A d A c A A= =   

( ) ( )12 4 1 12 4 2, { } 0.3827, , { } 0.3900d A c A d A c A= =   

( ) ( )12 4 3 12 4 4 5, { } 0.3038, , { , } 0.08209d A c A d A c A A= =   

( ) ( )12 5 1 12 5 2, { } 0.3494, , { } 0.3682d A c A d A c A= =   

( ) ( )12 5 3 12 5 4 5, { } 0.3132, , { , } 0.07412d A c A d A c A A= =   

         
Based on the above distances, we get the classifications: 1 2 3{ },{ },{ }A A A  and 

4 5{ , }A A . Since the center of each cluster is not changed, the iteration stops. 
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(2) 3K = : Taking 1 2 3{ },{ , }A A A  and 4 5{ , }A A  as the initial cluster, then the 

corresponding results are:  
         

1 1 2 3 2 3 4 5 4 5{ } , { , } ( , ), { , } ( , )c A A c A A f A A c A A f A A=  =  =    

( ) ( )12 1 1 12 1 2 3, { } 0, , { , } 0.4283d A c A d A c A A= =   

( )12 1 4 5, { , } 0.3450d A c A A = , ( )12 2 1, { } 0.4335d A c A =  

( )12 2 2 3, { , } 0.06408d A c A A = , ( )12 2 4 5, { , } 0.3889d A c A A =  

( ) ( )12 3 1 12 3 2 3, { } 0.4598, , { , } 0.1260d A c A d A c A A= =   

( )12 3 4 5, { , } 0.3211d A c A A = , ( )12 4 1, { } 0.3827d A c A =  

( ) ( )12 4 2 3 12 4 4 5, { , } 0.3478, , { , } 0.08209d A c A A d A c A A= = 

( ) ( )12 5 1 12 5 2 3, { } 0.3494, , { , } 0.3193d A c A d A c A A= =   

( )12 5 4 5, { , } 0.07412d A c A A =  

         
and thus, we get the classifications: 1 2 3{ },{ , }A A A  and 4 5{ , }A A . The center of 

each cluster remains, we finish the iteration.  
         

(3) 2K = : Using 1{ }A  and 2 3 4 5{ , , , }A A A A  as the initial cluster, and for this 

case, the results are presented as follows: 

1 1 2 3 4 5 2 3 4 5{ } , { , , , } ( , , , )c A A c A A A A f A A A A=  =   

( )12 1 1, { } 0d A c A = , ( )12 1 2 3 4 5, { , , , } 0.4115d A c A A A A =  

 ( )12 2 1, { } 0.4335d A c A = , 

( )12 2 2 3 4 5, { , , , } 0.2555d A c A A A A =   

( ) ( )12 3 1 12 3 2 3 4 5, { } 0.4598, , { , , , } 0.2612d A c A d A c A A A A= =   
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( ) ( )12 4 1 4 2 3 4 5, { } 0.3827, , { , , , } 0.1634d A c A d A c A A A A= =   

( ) ( )12 5 1 5 2 3 4 5, { } 0.3494, , { , , , } 0.1396d A c A d A c A A A A= =   
         

Obviously, the classifications are 1{ }A  and 2 3 4 5{ , , , }A A A A . Again the 

center of each cluster is not changed, so the iterative calculations are completed.  
The above example indicates that by taking the results provided by hierarchical 

clustering as initial cluster, it reduces the iterative number. That is to say, it can 
substantially raise the iterative efficiency of K-means clustering as compared to the 
case of randomly initial values. This favors to get the ideal clustering results quickly.  

As Torra (2010), Torra and Narukawa (2009) have shown that the envelope of a 
HFE is just an IFN (Xu 2007a), one can transform the hesitant fuzzy information 
(Table 2.21) into the intuitionistic fuzzy information shown in Table 2.22  
(Chen et al. 2014).   

Table 2.22. Intuitionistic fuzzy information 

 
1x  2x  3x  4x  

1A  (0.2,0.5) (0.1,0.8) (0.5,0.3) (0.9,0) 

2A  (0.5,0.4) (0.6,0.15) (1,0) (0.15,0.65) 

3A  (0.45,0.35) (0.6,0.3) (0.9,0) (0.1,0.8) 

4A  (1,0) (1,0) (0.85,0.1) (0.75,0.15) 

5A  (0.9,0) (0.9,0.1) (0.8,0.1) (0.7,0.2) 
 

 
5x  6x  7x  8x  

1A  (0.4,0.35) (0.1,0.9) (0.3,0.5) (1,0) 

2A  (0,0.8) (0.7,0.15) (0.5,0.3) (0.65,0.2) 

3A  (0.2,0.7) (0.6,0.2) (0.15,0.8) (0.2,0.65) 

4A  (0.2,0.8) (0.15,0.85) (0.1,0.7) (0.3,0.7) 

5A  (0.5,0.15) (0.3,0.65) (0.15,0.75) (0.4,0.3) 
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It is worth pointing out here that Xu (2009a) has clustered for the data of  
Table 2.22 using intuitionistic fuzzy clustering method, whose results are presented 
in Table 2.23 (Chen et al. 2014). 

Table 2.23. Comparison of two different types of cluster methods 

Classes 
Hierarchical hesitant fuzzy 

K-means clustering algorithm 
Intuitionistic fuzzy hierarchical 

clustering algorithm 

5 1{ }A , 2{ }A , 3{ }A , 4{ }A , 5{ }A  1{ }A , 2{ }A , 3{ }A , 4{ }A , 5{ }A  

4 1{ }A , 2{ }A , 3{ }A , 4 5{ , }A A  1{ }A , 2{ }A , 3{ }A , 4 5{ , }A A  

3 1{ }A , 2 3{ , }A A , 4 5{ , }A A  1{ }A , 2 3{ , }A A , 4 5{ , }A A  

2 1{ }A , 2 3 4 5{ , , , }A A A A  1{ }A , 2 3 4 5{ , , , }A A A A  

1 1 2 3 4 5{ , , , , }A A A A A  1 2 3 4 5{ , , , , }A A A A A  
 

We can see from Table 2.23 that the clustering results of HFSs, to a large extent, 
agree with those of IFSs, as the envelope of HFE is just an IFN.  

Example 2.16 (Chen et al. 2014).  The information on six aspects of five tourism 
resources is evaluated. The six aspects are scale, environmental conditions, 
integrity, service, tour routes and convenient traffic, which are represented by the 

HFSs ( 1, 2, ,5)iA i =   in the feature space 1 2 6{ , , , }X x x x=  . 

T
1 1 1

, ,...,
6 6 6

w  =  
 

 is the weight vector of ix ( 1, 2, , 6i =  ). The data are 

listed in Table 2.24 (Chen et al. 2014).   

Table 2.24. Hesitant fuzzy information 

 1x  2x  3x  4x  5x  6x  

1A  {0.3.0.5} {0.6,0.8,0.9} {0.4,0.7} {0.8,0.9} {0.1,0.2,0.4} {0.5,0.6} 

2A  {0.6,0.7} {0.5,0.6,0.8} {0.6,0.8,0.9} {07,0.9} {0.3,0.4} {0.4,0.7} 

3A  {0.4,0.6} {0.8,0.9} {0.5,0.9} {0.6,0.7,0.8} {0.4,0.5} {0.3,0.8} 

4A  {0.2,0.6} {0.4,0.5,0.9} {0.9,1} {0.8,0.9} {0.2,0.5} {0.7,0.9} 

5A  {0.5,0.8} {0.3,0.4} {0.6,0.7} {0.7,0.9} {0.6,0.8} {0.5,0.7} 
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Tourism department divides the five scenic areas into three categories.   

Step 1. At this step, each of the HFSs ( 1, 2, , 5)iA i =   is considered as a 

unique cluster: 1 2 3 4{ }, { }, { }, { }A A A A       and 5{ }A . 

Step 2. Compare each of the HFSs ( 1, 2, ,5)iA i =   with all the other four 

HFSs by using Eq.(1.12). We find that ( ){ }12 2 3 12( , ) min ,i jd A A d A A= , 

, 1, 2, ,5i j =   and i j≠ . Considering that only two clusters can be jointed in 

each stage, the HFSs ( 1, 2, , 5)jA j =   can be clustered into the following 

four clusters at the second stage: 1 2 3 4{ }, { , }, { }A A A A     and 5{ }A . 

Step 3.  Calculate the center of each cluster by using Eq.(1.33), and then compare 
each cluster with the other three clusters by using Eq.(1.12). Subsequently, the 

HFSs ( 1, 2, ,5)iA i =   can be clustered into the following three clusters at the 

third stage: 

1 4 2 3 5{ , }, { , }, { }A A A A A     

Step 4. Select 1 4 2 3{ , }, { , }A A A A   and 5{ }A  as initial cluster of K-means, and 

calculate the centroids of all clusters and their distances to each set:  
         

2 3 2 3 2 3

1
{ , } ( , ) ( )

2
c A A f A A A A= = ⊕

1 4 1 4 1 4 5 5

1
{ , } ( , ) ( ), { }

2
c A A f A A A A c A A = = ⊕   =   

( ) ( )12 1 2 3 12 1 1 4, { , } 0.1697, , { , } 0.1469d A c A A d A c A A= =   

( )12 1 5, { } 0.2194d A c A = , ( )12 2 2 3, { , } 0.0977d A c A A =  

( ) ( )12 2 1 4 12 2 5, { , } 0.1457, , { } 0.1556d A c A A d A c A= =   

( ) ( )12 3 2 3 12 3 1 4, { , } 0.1163, , { , } 0.1598d A c A A d A c A A= =   

( )12 3 5, { } 0.2111d A c A = , ( )12 4 2 3, { , } 0.1816d A c A A =  

( ) ( )12 4 1 4 12 4 5, { , } 0.1070, , { } 0.2361d A c A A d A c A= =   



260 2   Distance, Similarity, Correlation, Entropy Measures and Clustering Algorithms 

 

( ) ( )12 5 2 3 12 5 1 4, { , } 0.1832, , { , } 0.2300d A c A A d A c A A= =   

( )12 5 5, { } 0d A c A =  

         
The new clusters obtained from the above distances are 1 4 2 3{ , }, { , }A A A A   

and 5{ }A . Obviously, the center of clusters is not changed, the iterative process 

stops. 
To illustrate the effectiveness and stability of the hierarchical K–means 

clustering methods, we make a simple test below:  
Let 3K = , instead of selecting hierarchical clustering results as the initial 

classification, we randomly select 1 2 3 4{ , , }, { }A A A A   and 5{ }A  as initial 

clusters, whose centroids are: 
         

1 2 3 1 2 3 1 2 3

1
{ , , } ( , , ) ( )

3
c A A A f A A A A A A= = ⊕ ⊕  

4 4 5 5{ } , { }c A A c A A= =   

         

The distances between each set and 1 2 3{ , , }c A A A , 4{ }c A  and 5{ }c A  

are:  

( ) ( )12 1 1 2 3 12 1 4, { , , } 0.1656, , { } 0.1639d A c A A A d A c A= =   

( )12 1 5, { } 0.2194d A c A = , ( )12 2 1 2 3, { , , } 0.1170d A c A A A =  

( ) ( )12 2 4 12 2 5, { } 0.1528, , { } 0.1556d A c A d A c A= =   

( ) ( )12 3 1 2 3 12 3 4, { , , } 0.1354, , { } 0.1778d A c A A A d A c A= =   

( )12 3 5, { } 0.2111d A c A = , ( )12 4 1 2 3, { , , } 0.1889d A c A A A =  

( ) ( )12 4 4 12 4 5, { } 0, , { } 0.2361d A c A d A c A= =   

( ) ( )12 5 1 2 3 12 5 4, { , , } 0.1806, , { } 0.2361d A c A A A d A c A= =   
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( )12 5 5, { } 0d A c A =  

Examining the above distances, one can see except for 1A , which belongs to the 

second cluster, other sets are still the same as the initial cluster. Consequently, the 

classifications become 1 4 2 3{ , }, { , }A A A A   and 5{ }A . This result means that we 

again return to Step 4. The experiment clearly shows that using the results of 
hierarchical clustering as initial cluster in K-means algorithm is more efficient than 
randomly choosing initial cluster, i.e., less iteration. Besides, the initial choice does 
not affect the prediction of K-means clustering, indicating that the presented 
clustering method is stable. 

We can also transform hesitant fuzzy information (i.e. Example 2.16) into 
intuitionistic fuzzy information through Definition 1.6. Table 2.25 (Chen et al. 
2014) compares the propose method with Zhang et al. (2007)’s method.  

Table 2.25. Comparison of tourism scenic classification 

Classes The presented method  Zhang et al. (2007)’s method 

5 1{ }A , 2{ }A , 3{ }A , 4{ }A , 5{ }A  1{ }A , 2{ }A , 3{ }A , 4{ }A , 5{ }A  

4 1{ }A , 2 3{ , }A A , 4{ }A , 5{ }A   

3 1 4{ , }A A , 2 3{ , }A A , 5{ }A  1 2 3{ , , }A A A , 4{ }A , 5{ }A  

2 1 2 3 4{ , , , }A A A A , 5{ }A   

1 1 2 3 4 5{ , , , , }A A A A A  1 2 3 4 5{ , , , , }A A A A A  

 
From Table 2.25, we can see that the two methods with the class 3 are a little 

different, and other cases are completely the same. This is because the proposed 
method takes into account the hesitant factors. From the view of mathematics, it is 
because as an interval-value, the IFN contains the HFE (which is a discrete value) 
through Torra (2010)’s definition of envelope. Appearance of the difference in 
certain circumstances is caused by the difference in the data types and in the 
distribution of discrete values. This demonstrates the importance of the clustering 
methods for HFSs. The results suggest that when one performs clustering for 
discrete hesitation fuzzy data, the clustering method for HFSs should be applied, 
and it is not accurate to handle the data in the form of IFSs. 
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2.7    MST Clustering Algorithm for HFSs 

Based on the desirable characters of graph theory, Zhang and Xu (2012) developed 
a hesitant fuzzy minimal spanning tree (HFMST) clustering algorithm to deal with 
hesitant fuzzy information. 

In what follows, we first define the concept of hesitant fuzzy distance matrix: 
         

Definition 2.16 (Zhang and Xu 2012).  Let ( 1, 2, , )jA j n=   be n  HFSs, 

then ( )ij n nZ z ×=  is called a hesitant fuzzy distance matrix, where 

( , )ij i jz z A A=  is the distance between iA  and jA , which has the following 

properties: 

(1) 0 1ijz≤ ≤ , for all , 1, 2, ,i j n=  . 

(2) 0ijz =  if and only if i jA A= . 

(3) ij jiz z= , for all , 1, 2, ,i j n=  . 

2.7.1   Graph and Minimal Spanning Trees 

A graph Γ  is a pair of sets ( , )VΓ = Λ , where V  is the set of nodes and Λ  

is the set of edges. In an undirected graph, each edge is an unordered pair 

{ }1 2,ν ν . In a directed graph (also called a digraph in some literature), the edges 

are ordered pairs. The nodes 1ν  and 2ν  are called the endpoints of an edge. In a 

weighted graph, ω  is defined as a weight on each edge (Schaeffer 2007). It needs 
to mention that the graph in the rest of the subsection is the undirected graph. Next, 
we introduce some other notions of graph by Fig. 2.4 (Zhang and Xu 2012), in 
which Fig. 2.4(a) depicts a weighted graph with six nodes and nine edges: 

  

(a) Weighted linear graph                        (b) Spanning tree 

Fig.2.4. The graph and the minimal spanning trees 
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(c) Minimal spanning tree 

Fig.2.4. (continued) 

A sequence of edges and nodes that can be traveled to go from one node to that of 
another is called a path. For instance, it might be the case that two different paths 
exist from the node A  to the node H , such as the one denoted by ( ABCFH ) 
and the other one denoted by ( ABCDH ). If a path where the start node and 
destination node are the same is called a circuit as ( ABCA ) or ( ACFHDA ). A 
connected graph has paths between any pair of nodes. A connected acyclic graph 
that contains all nodes of Γ  is called a spanning tree of the graph. Obviously,  
Fig. 2.4(b) is one of such graphs. If we define the weight of a tree to be the sum of 
the weights of its constituent edges, then a minimal spanning tree of the graph Γ  
is a spanning tree, whose weight is minimal among all spanning trees of Γ  as  
Fig. 2.4(c) (Zahn 1971). 

In fact, the set Λ  in a normal graph is a crisp relation over V V× . That is to 

say, if there exists an edge between the nodes 1ν  and 2ν , then the membership 

degree equals 1, i.e., ( )1 2, 1μ ν νΛ = ; Otherwise ( )1 2, 0μ ν νΛ = , where 

1 2( , ) V Vν ν ∈ × . If a fuzzy relation R  over V V×  is defined, then the 

membership function 1 2( , )Rμ ν ν  takes various values from 0 to 1, and such a 

graph is called a fuzzy graph. If R  is a hesitant fuzzy relation over V V× , 
then ( , )V RΓ =  is called a hesitant fuzzy graph. 

Based on the hesitant fuzzy distance matrix given in Definition 2.16, Zhang and 
Xu (2012) used the idea of Zahn (1971) to develop a hesitant fuzzy minimal 
spanning tree (HFMST) clustering algorithm. 

2.7.2   HFMST Clustering Algorithm  

Let 1 2{ , , , }mX x x x=   be an attribution space and T
1 2( , , , )mw w w w=   

the weight vector of the elements ( 1,2, , )jx j m=  , with 0jw ≥ , 
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1, 2, ,j m=  , and 
1

1
m

j
j

w
=

= . Let iA ( 1,2, , )i n=   be a collection of n  

HFSs expressing n  samples to be clustered, having the following forms: 

{ , ( ) | }
ii j A j jA x h x x X= < > ∈ , 1, 2, ,i n=            (2.188) 

         
Then we propose a hesitant fuzzy minimal spanning tree (HFMST) clustering 

algorithm, whose steps are as follows (Zhang and Xu 2012):  
         

(Algorithm 2.6) (HFMST clustering algorithm) 
         

Step 1. Compute the hesitant fuzzy distance matrix and the fuzzy graph: 
         

(1) Calculate the distance ( , )ij i jz z A A=  by Eqs.(2.10)-(2.18) and get the 

hesitant fuzzy distance matrix ( )ij n nZ z ×= . 

(2) Build the hesitant fuzzy graph ( , )VΓ = Λ  where every edge between iA  

and jA  has the weight ijz  represented by HFSs as an element of the hesitant 

fuzzy distance matrix ( )ij n nZ z ×= , which shows the dissimilarity degree 

between the samples iA  and jA . 

Step 2. Compute the MST of the hesitant fuzzy graph ( , )VΓ = Λ  by Kruskal’s 

method (Kruskal 1965) (or Prim’s method (Prim 1957)): 
         

(1) Sort the edges of Γ  in increasing order by weight.  
         

(2) Keep a sub-graph Γ  of Γ , which is initially empty, and choose at each step 

the edge e  with the smallest weight to add to Γ , in which the endpoints of e  
are disconnected. 

         

(3) Repeat the process (2) until the sub-graph Γ  spans all nodes. Thus, we get the 
MST of the hesitant fuzzy graph ( , )VΓ = Λ . 

         
Step 3. Make clustering analysis by using the minimal hesitant fuzzy spanning tree. 
Thus, we can get a certain number of sub-trees (clusters) by disconnecting all the 

edges of the MST with weights greater than a threshold 0λ . The clustering results 

induced by the sub-trees do not depend on some particular MST (Gaertler 2002). 
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2.7.3   Numerical Examples  

In this subsection, two illustrative examples will be given in order to demonstrate 
the practical usage and the effectiveness of Algorithm 2.6. 

         
Example 2.17 (Zhang and Xu 2012).  Jiangxi province is located in southeast of 
China and the middle reaches of the Changjiang (Yangtze) River, which enjoys 
some of the favorable physical conditions, with a diversity of natural resources and 
the suitability for growing various crops. However, there are also some restrictive 
factors for developing agriculture such as a tight man–land relation between, a 
constant degradation of natural resources and a growing population pressure on 
land resource reserve. Based on the distinctness and differences in environment and 
natural resources, Jiangxi Province can be roughly divided into ten cities: 

1A − Fuzhou, 2A − Nanchang, 3A − Shangrao, 4A − Jiujiang, 5A − Pingxiang, 

6A − Yingtan, 7A − Ganzhou, 8A − Yichun, 9A − Jingdezhen, 10A − Ji'an. 

Hence, in order to co-ordinate the development and improve people’s living 
standards, the local government intends to classify these cities into different 
regions. Suppose that several DMs are invited to evaluate the performances of the 

ten alternatives (cities) based on two attributes: (1) 1x : Ecological benefit;  (2) 

2x : Economic benefit. For an alternative under an attribute, although all the DMs 

provide their evaluated values by using HFEs. The results evaluated by the DMs 
are described as follows:  

         

1 1 2{ ,{0.8,0.7,0.6} , ,{0.8,0.7,0.3} }A x x= < > < >  

2 1 2{ ,{0.9,0.8,0.3} , ,{0.8,0.7,0.6} }A x x= < > < >  

3 1 2{ ,{0.9,0.7,0.1} , ,{0.8,0.7,0.6} }A x x= < > < >  

4 1 2{ ,{0.9,0.8,0.3} , ,{0.9,0.8,0.2} }A x x= < > < >  

5 1 2{ ,{0.8,0.5,0.4} , ,{0.7,0.6,0.5} }A x x= < > < >  

6 1 2{ ,{0.9,0.8,0.2} , ,{0.9,0.8,0.7} }A x x= < > < >
 

7 1 2{ ,{0.8,0.7,0.6} , ,{0.9,0.7,0.6} }A x x= < > < >  

8 1 2{ ,{0.9,0.8,0.7} , ,{0.9,0.8,0.3} }A x x= < > < >  
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9 1 2{ ,{0.9,0.7,0.3} , ,{0.9,0.7,0.6} }A x x= < > < >  

10 1 2{ ,{0.7,0.6,0.5} , ,{0.9,0.8,0.1} }A x x= < > < >  

         
Let the weight vector of the attributes ( 1, 2)jx j =  be T(0.45, 0.55)w = . 

We utilize the HFMST clustering algorithm to group these operational plans 

iA ( 1, 2, ,10)i =  : 
         

Step 1. Construct the hesitant fuzzy distance matrix and the fuzzy graph where 

each node is associated to a city to be clustered which is expressed by a HFS: 
         

(1) Calculate the distance ( , )ij i jz z A A=  by Eq.(2.18), and then get the 

hesitant fuzzy distance matrix 10 10( )ijZ z ×= : 
         

0 0.3502 0.4399 0.2272 0.2502 0.469 0.2107 0.134 0.3512 0.2035

0.3502 0 0.0952 0.2814 0.2272 0.131 0.2117 0.3983 0.1155 0.463

0.4399 0.0952 0 0.3766 0.2327 0.1366 0.3014 0.4916 0.1617 0.5417

0.2272 0.2814 0.3766 0 0.3722 0.276 0.4217 0

Z =

.2541 0.3255 0.1824

0.2502 0.2272 0.2327 0.3722 0 0.3176 0.2501 0.3263 0.2449 0.3505

0.469 0.131 0.1366 0.276 0.3176 0 0.2651 0.5081 0.1291 0.5689

0.2107 0.2117 0.3014 0.4217 0.2501 0.2651 0 0.3176 0.1405 0.4047

0.134 0.3983 0.4916 0.2541 0.3263 0.5081 0.3176 0 0.3969 0.2517

0.3512 0.1155 0.1617 0.3255 0.2449 0.1291 0.1405 0.3969 0 0.45

0.2035 0.463 0.5417 0.1824 0.3505 0.5689 0.4047 0.2517 0.45 0

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 

 

         
(2) Construct the fuzzy graph ( , )VΓ = Λ  where every edge between iA  and 

jA  has the weight ijz  represented by a HFS as an element of the hesitant fuzzy 

distance matrix 10 10( )ijZ z ×= , which shows the dissimilarity degree between 

the samples iA  and jA  (see Fig. 2.5 (Zhang and Xu 2012)). 
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Fig. 2.5. The hesitant fuzzy graph ( , )VΓ = Λ  

         
Step 2. Compute the MST of the hesitant fuzzy graph ( , )VΓ = Λ  by Kruskal’s 

method (Kruskal 1956): 
         

(1) Sort the edges of Γ  in increasing order by weights: 
         

23 29 26 18 36 79 39 4,10 1,10 27 25 14 34

59 57 15 8,10 4,8 67 45 24 37 56 78 49 58

12 5,10 19 45 34 89 7,10 47 13 9,10 2,10 16

38 68 3,10 6,10

z z z z z z z z z z z z z

z z z z z z z z z z z z z

z z z z z z z z z z z z

z z z z

< < < < < < < < < < = <
< < < < < < < < < < = < <
< < < < < < < < < < < <

< < < <

 

(2) Keep an empty sub-graph Γ  of Γ , and choose the edge e  with the smallest 

weight to add to Γ , in which the endpoints of e  are disconnected, so we can 

choose the edge 23e  between 2A  and 3A . 

(3) Repeat the process (2) until the sub-graph Γ  spans ten nodes. Thus, we get the 
MST of the hesitant fuzzy graph ( , )VΓ = Λ  (see Fig. 2.6(a-j) (Zhang and Xu 

2012)): 
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(a) 

   

(b) 
 

                                         
(c)         

Fig.2.6. The sub-trees of the hesitant fuzzy graph ( , )VΓ = Λ  
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Fig 2.6. (continued) 
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(g) 
 

    

(h)                                                 

 

                         (i)    

Fig 2.6. (continued) 
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(j)                

Fig. 2.6. (continued) 

Step 3. Select a threshold 0λ  and disconnect all the edges of the MST with 

weights greater than 0λ  so that we could get a certain number of sub-trees 

(clusters) automatically, listed in Table 2.26 (Zhang and Xu 2012): 
         

Table 2.26. Clustering results with various values of the threshold 0λ  

0λ  Corresponding clustering results 
Corresponding 

MST 

0 34 0.3766zλ = =  
1 2 3 4 5 6 7 8 9 10{ , , , , , , , , , }A A A A A A A A A A  Fig. 2.6(a) 

0 14 25 0.2272z zλ = = =  
1 4 8 10 2 3 5 6 7 9{ , , , },{ , , , , , }A A A A A A A A A A  Fig. 2.6(b) 

0 1,10 0.2305zλ = =  { }5 1 4 8 10 2 3 6 7 9,{ , , , },{ , , , , }A A A A A A A A A A Fig. 2.6(c) 

0 4,10 0.1824zλ = =  { }5 1 8 4 10 2 3 6 7 9,{ , },{ , },{ , , , , }A A A A A A A A A A Fig. 2.6(d) 

0 79 0.1405zλ = =  { }5 1 8 4 10 2 3 6 7 9,{ , },{ },{ },{ , , , , }A A A A A A A A A A Fig. 2.6(e) 
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Table 2.26. (continued) 

0 18 0.134zλ = =  { } { }1 8 4 5 7 10 2 3 6 9{ , },{ }, , ,{ },{ , , , }A A A A A A A A A A Fig. 2.6(f) 

0 26 0.131zλ = =  { } { }1 4 5 7 8 10 2 3 6 9{ },{ }, , ,{ },{ },{ , , , }A A A A A A A A A A Fig. 2.6(g) 

0 29 0.1155zλ = =  { }1 4 5 6 7 8 10 2 3 9{ },{ },{ },{ }, ,{ },{ },{ , , }A A A A A A A A A A Fig. 2.6(h) 

0 23 0.0952zλ = =  { }1 2 3 4 5 6 7 8 9 10{ },{ , },{ },{ },{ }, ,{ },{ },{ }A A A A A A A A A A Fig. 2.6(i) 

0 0λ =  1 2 3 4 5 6 7 8 9 10{ },{ },{ },{ },{ },{ },{ },{ },{ },{ }A A A A A A A A A A Fig. 2.6(j) 

 
Obviously, according to Table 2.26 based on real needs, the Jiangxi provincial 

government can make its ten cities to be divided into different agroecological 
regions (clusters) in order to improve its overall development. For instance, if the 
government intends to classify these ten cities into four agroecological regions 
(clusters), thus, it can easily obtain the results from Table 2.26, which is derived by 
utilizing Algorithm 2.6 to compute the assessment values of alternatives (cities) 
provided by the DMs (experts), as follows: 

The first agroecological region includes: 5A − Pingxiang; the second 

agroecological region includes: 1A − Fuzhou, and 8A − Yichun; the third 

agroecological region includes: 4A − Jiujiang and 10A − Ji'an; and the fourth 

agroecological region includes: 2A − Nanchang, 3A − Shangrao, 

5A − Pingxiang, 6A − Yingtan, 7A − Ganzhou, and 9A − Jingdezhen. 

It is noted that the numbers of values in different HFEs of HFSs are the same in 
Example 2.17. However in most cases, the numbers of values in different HFEs of 
HFSs may be different. In Example 2.18, we will make further discussion in detail.  

To compare with the intuitionistic fuzzy MST (IFMST) clustering algorithm 
and the fuzzy MST (FMST) clustering algorithm, we give another example with 
six nodes for convenience. In Example 2.18, we will first make clustering analysis 
under hesitant fuzzy environment, and then consider the HFSs’ envelopes, i.e., 
intuitionistic fuzzy data, and make an IFMST clustering analysis. Finally, we will 
make a FMST clustering analysis when the considered intuitionistic fuzzy sets 
reduce to the fuzzy sets by considering only the membership degrees of the data.  

         
Example 2.18 (Zhang and Xu 2012).  In order to complete an operational 
mission, six sets of operational plans are made initially (adapted from Zhang et al. 
(2009) and Zhao et al. (2012)). To group these operational plans with respect to 
their comprehensive functions, a military committee has been set up to provide 
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assessment information on them. The attributes which are considered here in 

assessment of the six sets of operational plans are: (1) 1x  is the effectiveness of 

operational organization; (2) 2x  is the effectiveness of operational command. 

The military committee evaluates the performance of the six operational plans 

according to the attributes ( 1, 2)jx j = , and gives the hesitant fuzzy data as: 
         

1 1 2{ ,{0.85,0.70} , ,{0.80,0.75,0.60} }A x x= < > < >

2 1 2{ ,{0.65, 0.5, 0.4} , ,{0.9, 0.8} }A x x= < > < >  

3 1 2{ ,{0.75,0.6,0.55} , ,{0.85,0.8,0.7} }A x x= < > < >

4 1 2{ ,{0.65,0.44} , ,{0.8,0.7,0.6} }A x x= < > < >  

5 1 2{ ,{0.65, 0.6, 0.5} , ,{0.8, 0.75} }A x x= < > < >

6 1 2{ ,{0.75,0.6,0.55} , ,{0.85,0.7,0.57} }A x x= < > < >  

         
Apparently, the numbers of values in different HFEs of HFSs are different. To 

operate correctly, we consider that the DMs are pessimistic in Example 2.18, so 
we change the hesitant fuzzy data by adding the minimal values as below (for 
convenience of description, here we also list them in the corresponding sets): 

         

1 1 2{ ,{0.85,0.7,0.7} , ,{0.8,0.75,0.6} }A x x= < > < >  

2 1 2{ ,{0.65,0.5,0.4} , ,{0.9,0.8,0.8} }A x x= < > < >  

3 1 2{ ,{0.75,0.6,0.55} , ,{0.85,0.8,0.7} }A x x= < > < >

4 1 2{ ,{0.65,0.44,0.44} , ,{0.8,0.7,0.6} }A x x= < > < >  

5 1 2{ ,{0.65,0.6,0.5} , ,{0.8,0.75,0.75} }A x x= < > < >

6 1 2{ ,{0.75,0.6,0.55} , ,{0.85,0.7,0.57} }A x x= < > < >  
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Then we proceed to utilize the HFMST clustering algorithm to group these 

operational plans jA ( 1, 2, , 6)j =  : 
         

Step 1. Construct the hesitant fuzzy distance matrix and the hesitant fuzzy graph: 

(1) Calculate the distance ( , )ij i jz z A A=  by Eq.(2.18), and then we get the 

hesitant fuzzy distance matrix 6 6( )ijZ z ×=  as: 
         

0.0000 0.3264 0.1474 0.1733 0.2052 0.1140

0.3264 0.0000 0.1480 0.1761 0.1899 0.2406

0.1474 0.1480 0.0000 0.1609 0.090 0.0965

0.1733 0.1761 0.6090 0.0000 0.1540 0.1216

0.2052 0.1899 0.0900 0.1540 0.0000 0.1735

0.1140 0.2406 0.0965 0

Z =

.1216 0.1735 0.0000

 
 
 
 
 
 
 
 
 

 

         
(2) Construct the fuzzy graph ( , )VΓ = Λ  where every edge between iA  and 

jA  has the weight ijz  represented by HFSs as an element of the hesitant fuzzy 

distance matrix 6 6( )ijZ z ×= , which shows the dissimilarity degree between the 

samples iA  and jA  (see Fig. 2.7) (Zhang and Xu 2012): 

 

Fig.2.7. The hesitant fuzzy graph ( , )VΓ = Λ  

Step 2. Compute the hesitant fuzzy MST of the hesitant fuzzy graph ( , )VΓ = Λ . 

See Step 2 in the HFMST clustering algorithm. 

Step 3. Group the nodes (the operational plans) into clusters. See Step 3 in the 
HFMST clustering algorithm. 

         
Hence, after the above steps, we obtain the corresponding clustering results, 

listed in Table 2.27 (Zhang and Xu 2012): 
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Table 2.27. The HFMST clustering results 

0λ  Corresponding clustering results 

0 23 0.1474zλ = =  1 2 3 4 5 6{ , , , , , }A A A A A A  

0 46 0.1216zλ = =  2 1 3 4 5 6{ },{ , , , , }A A A A A A  

0 16 0.114zλ = =  2 4 1 3 5 6{ },{ },{ , , , }A A A A A A  

0 36 0.0965zλ = =  1 2 4 3 5 6{ },{ },{ },{ , , }A A A A A A  

0 35 0.09zλ = =  1 2 4 6 3 5{ },{ },{ },{ },{ , }A A A A A A  

0 0λ =  1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  

 
According to Defined 1.6, the IFN ( )env hα  is the envelope of the HFE h , 

then we can transform the hesitant fuzzy data of Example 2.18 into intuitionistic 
fuzzy data: 

         

1 1 2{ , 0.70, 0.15 , , 0.60, 0.20 }A x x= < > < >

2 1 2{ , 0.40, 0.35 , , 0.80, 0.10 }A x x= < > < >  

3 1 2{ , 0.55, 0.25 , , 0.70, 0.15 }A x x= < > < >  

4 1 2{ , 0.44, 0.35 , , 0.60, 0.20 }A x x= < > < >  

5 1 2{ , 0.50, 0.35 , , 0.75, 0.20 }A x x= < > < >  

6 1 2{ , 0.55, 0.25 , , 0.57, 0.15 }A x x= < > < >  
         

and then the attributes ( 1, 2, ,6)jx j =   can be clustered as the following 

IFMST clustering algorithm (Zhao et al. 2012): 
         

Step 1. Compute the intuitionistic fuzzy distance matrix and the fuzzy graph: 
         

(1) Calculate ( , )ij i jz z A A=  by the following distance measure (2.186), where 

the weight vector of the criteria ( 1, 2)jx j =  is T(0.45, 0.55)w = , and we 

get the fuzzy distance matrix: 
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0.0000 0.2450 0.1225 0.1170 0.1725 0.1115

0.2450 0.0000 0.12250 0.1280 0.1000 0.1940

0.1225 0.1225 0.0000 0.1045 0.1000 0.0715

0.1170 0.1280 0.1045 0.0000 0.1095 0.0935

0.1725 0.1000 0.1000 0.1095 0.0000 0.1715

0.1115 0.1940 0.071

Z =

5 0.0935 0.1715 0.0000

 
 
 
 
 
 
 
 
 

 

(2) Construct the fuzzy graph ( , )VΓ = Λ  where every edge between iA  and 

jA  has the weight ijz  represented by a HFS as an element of the hesitant fuzzy 

distance matrix 6 6( )ijZ z ×= , which shows the dissimilarity degree between the 

samples iA  and jA  (see Fig. 2.7 (Zhang and Xu 2012)). 

Step 2. Compute the MST of the intuitionistic fuzzy graph ( , )VΓ = Λ . See also 

Step 2 in the HFMST clustering algorithm.  
         

Step 3. Group the nodes (the operational plans) into clusters. See also Step 3 in the 
HFMST clustering algorithm.  

         
Obviously, after the above steps, we can obtain the corresponding clustering 

results, listed in Table 2.28 (Zhang and Xu 2012): 

Table 2.28. The IFMST clustering results 

0λ  Corresponding clustering results 

0 16 0.1115zλ = =  1 2 3 4 5 6{ , , , , , }A A A A A A  

0 25 35 0.1z zλ = = =  1 2 3 4 5 6{ },{ , , , , }A A A A A A  

0 46 0.088zλ = =  1 2 5 3 4 6{ },{ },{ },{ , , }A A A A A A  

0 36 0.0715zλ = =  1 2 4 5 3 6{ },{ },{ },{ },{ , }A A A A A A  

0 0λ =  1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  
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It is well known that both the intuitionistic fuzzy set and the HFS are the 
extensions of the traditional fuzzy set. Compared with the intuitionistic fuzzy set, 
each of its elements is composed of a membership degree, a non-membership 
degree and a hesitancy degree, each element of a fuzzy set is only composed of the 
membership degree. So the intuitionistic fuzzy data are reduced to the fuzzy data 
when we only consider the membership degrees of the intuitionistic data, then the 
operational plans’ information given by the military committee will be: 

         

1 1 2{ , 0.70 , , 0.60 }A x x= < > < > , 2 1 2{ , 0.40 , , 0.80 }A x x= < > < >  

3 1 2{ , 0.55 , , 0.70 }A x x= < > < > , 4 1 2{ , 0.44 , , 0.60 }A x x= < > < >  

5 1 2{ , 0.50 , , 0.75 }A x x= < > < > , 6 1 2{ , 0.55 , , 0.57 }A x x= < > < >  

and then the operational plans ( 1, 2, ,6)iA i =   can be clustered as the 

following FMST clustering algorithm:  
         

Step 1. Compute the fuzzy distance matrix and the fuzzy graph: 

(1) Calculate ( , )ij i jz z A A=  by the following distance measure: 

2

1

( , ) (| ( ) ( ) |)
i ji j k A k A k

k

z A A w x xμ μ
=

= −              (2.189)           

where the weight vector of the attributes ( 1,2)kx k =  is T(0.45, 0.55)w = , 

and we get the fuzzy distance matrix: 
         

0.0000 0.2450 0.1225 0.1170 0.1725 0.0840

0.2450 0.0000 0.1225 0.1280 0.0725 0.1940

0.1225 0.1225 0.0000 0.1045 0.0500 0.0715

0.1170 0.1280 0.1045 0.0000 0.1095 0.0660

0.1725 0.0725 0.0500 0.1095 0.0000 0.1215

0.0840 0.1940 0.0715

D =

0.0660 0.1215 0.0000
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(2) Construct the fuzzy graph ( , )VΓ = Λ  where every edge between iA  and 

jA  has the weight ijz  represented by a HFS as an element of the hesitant fuzzy 

distance matrix 6 6( )ijZ z ×= , which shows the dissimilarity degree between the 

samples iA  and jA  (see Fig. 2.7). 

Step 2. Compute the MST of the fuzzy graph ( , )VΓ = Λ . See also Step 2 in the 

HFMST clustering algorithm.  
         

Step 3. Group the nodes (the operational plans) into clusters. See also Step 3 in the 
HFMST clustering algorithm. 

         
Analogously, after the above steps, we can get the corresponding clustering 

results, listed in Table 2.29 (Zhang and Xu 2012): 

Table 2.29. The FMST clustering results 

0λ  Corresponding clustering results 

0 16 0.0840zλ = =  1 2 3 4 5 6{ , , , , , }A A A A A A  

0 25 0.0725zλ = =  1 2 3 4 5 6{ },{ , , , , }A A A A A A  

0 36 0.0715zλ = =  1 2 3 4 5 6{ },{ },{ , , , }A A A A A A  

0 46 0.0660zλ = =  1 2 3 5 4 6{ },{ },{ , },{ , }A A A A A A  

0 35 0.0500zλ = =  1 2 3 5 4 6{ },{ },{ , },{ },{ }A A A A A A  

0 0λ =  1 2 3 4 5 6{ },{ },{ },{ },{ },{ }A A A A A A  

 
In order to provide a better view of the comparison results, we put the clustering 

results of those three algorithms into Table 2.30 (Zhang and Xu 2012): 
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Table 2.30. Clustering results 

Classe

s 

The HFMST clustering

Algorithm 

The IFMST clustering 

algorithm 

The FMST 

clustering 

algorithm 

6 1 2 3{ },{ },{ },A A A  

4{ }A , 5 6{ },{ }A A  
1 2 3 4{ },{ },{ },{ }A A A A ,

5 6{ },{ }A A  

1 2 3{ },{ },{ },A A A  

4{ }A ,

5 6{ },{ }A A  

5 
1 2 4 6{ },{ },{ },{A A A A

, 

3 5{ , }A A  

1 2 4 5{ },{ },{ },{ }A A A A ,

3 6{ , }A A  

1 2 4{ },{ },{ }A A A

, 

6{ }A , 3 5{ , }A A  

4 1 2 4{ },{ },{ },A A A  

3 5 6{ , , }A A A  
1 2 5{ },{ },{ },A A A  

3 4 6{ , , }A A A  
1 2 3 5{ },{ },{ , }A A A A

, 4 6{ , }A A  

3 2 4{ },{ },A A  

1 3 5 6{ , , , }A A A A  
 1 2{ },{ },A A  

3 4 5 6{ , , , }A A A A  

2 
2 1 3 4 5 6{ },{ , , , , }A A A A A A 1 2 3 4 5 6{ },{ , , , , }A A A A A A

1 2 3 4 5 6{ },{ , , , , }A A A A A A

1 
1 2 3 4 5 6{ , , , , , }A A A A A A 1 2 3 4 5 6{ , , , , , }A A A A A A  

1 2 3 4 5 6{ , , , , , }A A A A A A

 
After calculations, we find that the clustering results of those three clustering 

algorithms are quite different. The main reason is that the HFMST clustering 
algorithm clusters the fuzzy information which is represented by several possible 
values, not by a margin of error (as in intuitionistic fuzzy sets), while the FMST 
clustering algorithm clusters the fuzzy information which only considers the 
membership degrees and thus loses too much information. Obviously, compared 
with the clustering results of the FMST clustering algorithm, both the HFMST 
clustering results and the IFMST clustering results are more reasonable. Moreover, 
when we meet some situations where the information is represented by several 
possible values, the HFMST clustering algorithm demonstrates its great superiority 
in clustering those hesitant fuzzy data. 
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Chapter 3  
Hesitant Preference Relations 

Fuzzy preference relations (Orlovsky 1978) (also known as reciprocal preference 
relation (Baets et al. 2006; Xu 2007b,f; Xu and Chen 2008b)) and multiplicative 
preference relations (Saaty 1980) are the most common tools to express the DMs’ 
preferences over alternatives in decision making. However, sometimes, to get a 
more reasonable decision result, a decision organization, which contains a lot of 
DMs (or experts), is authorized to provide the preferences by comparing each pair 
of alternatives using 0-1 scale, and when providing the degrees to which an 
alternative is superior to another, it is not very sure about a value but has hesitancy 
between several possible values. In such cases, these several possible values can 
be considered as a HFE, and a hesitant fuzzy preference relation is constructed 
when all the preferences over a set of alternatives are provided (Xia and Xu 2013).  

It is noted that the hesitant fuzzy preference relation is developed based on the 
fuzzy preference relation, whose values are expressed by using the 0-1 scale which 
is uniformly and symmetrically distributed around 0.5. But generally speaking, the 
grades of the preference are not symmetrical but unsymmetrical distributed around 
some value. Especially, the distances between the grades expressing good 
information should be bigger than the ones between the grades expressing the bad 
information in our intuition. Saaty’s 1-9 scale is a useful tool to deal with such a 
situation, especially in expressing a multiplicative preference relation which has 
been applied in many areas. Although lots of work has provided mechanisms to 
covert multiplicative preference relation to fuzzy ones and vise-versa, some original 
information may be lost in the transformation process. Recently, people have been 
paying more and more attention to personalization service, and therefore decision 
techniques should be more flexible to satisfy the DMs’ different demands. Some 
DMs may think the 0-1 scale can express their preferences best, some may think 
Saaty’s 1-9 scale can express their preferences more subjectively. If we transform 
their preferences by using other scales, the process may distort their original 
information. On the other hand, when we use the transformation formulas, we have 
to choose the most suitable one from a lot of transformation formulas before makng 
decision. Different transformation formulas are developed based on different 
relationships between these two scales, but it is very hard to recognize these 
relations in practical decision making problems. Different transformation formulas 
may produce different transformation results, and thus may produce different 
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decision results, which makes the decision more complex. Therefore, some 
techniques should be developed suitable for different scale-based preference 
relations but do not focus on the transformation formulas. If the DMs in the 
decision organization don’t like to use the values between 0  and 1 but would 
like to use Saaty’s ratio scale (as in multiplicative preference relations) to provide 

the degree that the alternative iA  is superior to jA , for example, some DMs in 

the decision organization provide 
1

3
, some provide 1, and the others provide 5 , 

then the degrees to which the alternative iA  superior to jA ( i j≠ ) can be 

represented by 
1

,1,5
3ija
 =  
 

 which are called a HME (Xia and Xu 2011c). If 

the decision organization provides the preference that the alternative iA  is 

superior to kA ( k i j≠ ≠ ), some of the DMs may provide 
1

2
, the others may 

provide 1 , which can be represented by 
1

,1
2ikb

 =  
 

. If the decision 

organization provides the preference that the alternative kA  is superior to 

lA ( l i j k≠ ≠ ≠ ), all the members in the decision organization may agree the 

value 3 , which can be represented by {3}klb = . In such cases, we don’t consider 

the decision organization as three DMs or two DMs or one but as a whole which 
provides all the possible preference values about a set of alternatives, and 
construct a hesitant multiplicative preference relation. Xia and Xu (2013) defined 
the concept of hesitant fuzzy preference relation, based on which they gave an 
approach to group decision making. They also introduced the hesitant 
multiplicative preference relation which provides the DMs a very useful tool to 
express their multiplicative hesitant preferences over alternatives. Liao et al. (2013) 
gave the concepts of multiplicative consistency, acceptable multiplicative 
consistency for the hesitant fuzzy preference relation, based on which, two 
algorithms were given to improve the inconsistency level of a hesitant fuzzy 
preference relation. Furthermore, the consensus of group decision making based on 
hesitant fuzzy preference relations was also investigated. Zhu and Xu (2013a) 
developed two regression methods that transform hesitant fuzzy preference 
relations into fuzzy preference relations. On the basis of the complete consistency, a 
reduced fuzzy preference relation can be obtained from a hesitant fuzzy preference 
relation with the highest consistency level. Based on the weak consistency, another 
regression method was developed to transform hesitant fuzzy preference relations 
into “reduced fuzzy preference relations” which all satisfy the weak consistency. 
Zhu et al. (2013b) put forward two principles to normalize HFEs, i.e., 
a -normalization and b -normalization, based on which they developed a hesitant 
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goal programming model to derive priorities from hesitant fuzzy preference 
relations and some consistency measures of hesitant fuzzy preference relations. 
Additionally, Zhu and Xu (2013b) developed a hesitant fuzzy programming method 
to derive priorities from hesitant multiplicative preference relation in AHP-hesitant 
group decision making. The method provides a group consensus index that 
measures the satisfaction degree of the group solution, integrates the group 
synthesis and prioritization together, increases the richness of numerical 
representation of comparison judgments, and results in a best group solution with 
the highest satisfaction degree. In this chapter, we will focus on group decision 
making with hesitant fuzzy preference relations.  

3.1   Hesitant Fuzzy Preference Relations in Group Decision 
Making 

Let 1 2{ , , , }nA A A A=   be a set of alternatives, then ( )ij n nU u ×=  is called a 

fuzzy preference relation (Orlovsky 1978) on A A´  with the condition that 

0
ij

u ³ , 1ij jiu u+ = , , 1, 2, ,i j n=  , where iju  denotes the degree that the 

alternative iA  is prior to the alternative jA . 0.5iju =  implies indifference 

between iA  and jA  denoted by i jA A ; 0 0.5iju≤ <  implies that jA  is 

preferred to iA  denoted by j iA A , the smaller the value of iju , the stronger 

the preference of the alternative jA  over iA ; 0.5 1iju< ≤  implies that iA  is 

preferred to jA  denoted by i jA A , the bigger the value of iju , the stronger the 

preference of the alternative iA  over jA . It is noted that the value iju  in a fuzzy 

preference relation is a certain value between 0  and 1. If a decision organization 

containing a lot of DMs is authorized to provide the degrees to which iA  is 

preferred to jA , some DMs provide 1
ijh , some provide 2

ijh  and the others provide 

3
ijh , where 3 3 3, , [0,1]ij ij ijh h h  ∈ , then in such a case, the preference information ijh  

that iA  is preferred to jA ( i j≠ )  can be considered as a HFE 

{ }1 2 3, ,ij ij ij ijh h h h= . For the alternatives iA  and kA ( k i j≠ ≠ ), some DMs in 

the decision organization may provide 1
ikh , and the others may provide 2

ikh , then 

the preference information ikh  that iA  is preferred to kA  can be considered as a 

HFE { }1 2,ik ik ikh h h= . In such cases, we can not consider the decision organization 

as three or two DMs, but just as a whole providing all the possible preference 
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information about alternatives. All ijh ( , 1, 2, ,i j n=  ) can construct a hesitant 

fuzzy preference relation defined as follows: 
 

Definition 3.1 (Xia and Xu 2013).  Let 1 2{ , , , }nA A A A=   be a fixed set, then 

a hesitant fuzzy preference relation H  on A  is presented by a matrix 

( )ij n nH h A A×= ⊂ × , where { }| 1,2, ,
ij

t
ij ij hh h t l= =   is a HFE indicating 

all the possible degrees to which iA  is preferred to jA . Moreover, ijh  should 

satisfy the following conditions: 
 

( 1)( ) 1h ji
l tt

ij jih h
σσ − +

+ = , {0.5}iih = , 
ij jih hl l= , , 1, 2, ,i j n=        (3.1) 

 

Consider a group decision making problem, let 1 2{ , , , }nA A A A=   be a 

discrete set of alternatives, kD 0( 1, 2, , )k p=   the set of decision 

organizations and 
01 2( , , , )pυ υ υ υ Τ=   the weight vector of the decision 

organizations with 
0

1

1
p

k
k

υ
=

=  and [0,1]kυ ∈ , 01,2, ,k p=  . The decision 

organization kD  provides all the possible preference values for each pair of 

alternatives, and constructs a hesitant fuzzy preference relation ( )( ) ( )k k
ij n n

H h
×

= . 

By the above analysis, we can develop an approach to group decision making 
problem based on the hesitant fuzzy preference relations, which can be described as 
follows (Xia and Xu 2013):  

 
Step 1.  Utilize the GHFA operator in Definition 1.18) (or the GHFG operator in 

Definition 1.19) to aggregate all ( )k
ijh ( 1, 2, ,j n=  ) corresponding to the 

alternative iA , and then get the averaged HFE ( )k
ih  of the alternative iA  over 

all the other alternatives for the decision organization kD : 
      

     ( )k
ih = GHFA ( )( ) ( ) ( )

1 2, , ,k k k
i i inh h hλ = ( )

1

( )

1

1 n
k

ij
j

h
n

λλ

=

 ⊕ 
 

          (3.2) 

 

or 
 

( )k
ih = GHFG ( )( ) ( ) ( )

1 2, , ,k k k
i i inh h hλ = ( )

1
( )

1

1 n
k n

ij
j

hλ
λ =

 
⊗ 
 

          (3.3) 

where λ  is a positive real number. 
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Step 2. Utilize the GHFWA (or the GHFWG) operator to aggregate all 
( )k
ih ( 01,2, ,k p=  ) into a collective HFE ih  of the alternative iA  over all 

the other alternatives: 
 

ih = GHWFA ( )0( )(1) (2), , , p
i i ih h hλ = ( )( )0

1

( )

1

p
k

k i
k

h
λλ

υ
=

 
 
 
         (3.4) 

 
or 

 

ih = GHWFG ( )0( )(1) (2), , , p
i i ih h hλ = ( )( )0

1

( )

1

p
k

k i
k

h
λλ

υ
=

 
 
 
∏         (3.5) 

 
where λ  is a positive real number. 

 

Step 3. Calculate the scores of ih ( 1, 2, ,i n=  ), and then rank all the 

alternatives iA ( 1, 2, ,i n=  ) and select the best one in accordance with the 

values of ( )is h ( 1, 2, ,i n=  ). 

 
Example 3.1 (Bazzazi et al. 2011).  Consider a problem of selecting a loading– 
hauling system for a hypothetical iron ore open pit mine. Three potential 

transportation systems are evaluated: (1) 1A : Shovel-truck system; (2) 2A : 

Shovel- truck-in-pit crusher-belt conveyor system; (3) 3A : Loader truck system. 
 

To get more objective results, three decision organizations, ( 1, 2,3)kD k =  

(whose weight vector is T(0.5,0.3,0.2)υ = ), are authorized to provide their 

preferences over these three systems iA ( 1, 2,3)i = . The three decision 

organizations compare these three systems and provide their preference values. 

Take 1A  as an example, the DMs in 1D  evaluate the degree to which 1A  is 

preferred to 2A , some DMs provide 0.1 , some provide 0.3 , and the rest give 

0.4 . However, these three parts in decision organization 1D  can’t persuade 

each other, then the preference information that 1A  is preferred to 2A  provided 

by the decision organization 1D  can be considered as a HFE {0.1,0.3,0.4} as 

a whole. In such a case, the other existing generalizations of fuzzy set are invalid. 
Hence, the decision organizations construct their hesitant fuzzy preference 
relations, which are listed in Tables 3.1-3.3 (Xia and Xu 2013), respectively. 
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Table 3.1. The hesitant fuzzy preference relation 1H  

 1A  2A  3A  

1A  {0.5} {0.1,0.3,0.4} {0.4,0.6,0.7,0.8} 

2A  {0.6,0.7,0.9} {0.5} {0.5,0.6,0.9} 

3A  {0.2,0.3,0.4,0.6} {0.1,0.4,0.5} {0.5} 

 
Table 3.2. The hesitant fuzzy preference relation 2H  

 1A  2A  3A  

1A  {0.5} {0.2,0.4} {0.5,0.6,0.8} 

2A  {0.6,0.8} {0.5} {0.5,0.6,0.8,0.9} 

3A  {0.2,0.4,0.5} {0.1,0.2,0.4,0.5} {0.5} 

 
Table 3.3. The hesitant fuzzy preference relation 3H  

 1A  2A  3A  

1A  {0.5} {0.3,0.4,0.5,0.7} {0.5,0.8} 

2A  {0.3,0.5,0.6,0.7} {0.5} {0.5,0.8,0.9} 

3A  {0.2,0.5} {0.1,0.2,0.5} {0.5} 

 
To get the optimal choice, the following steps are given: 

 
Step 1. Utilize the GHFA operator (3.2) (without loss of generality, let 1λ = ) to 

aggregate all ( )k
ijh ( 1, 2,3j = ) corresponding to the alternative iA , and then get 

the averaged HFE ( )k
ih  of the alternative iA  over all the other alternatives for 

the decision organization kD , for example: 

 
(2)
1h = GHFA ( )(2) (2) (2)

13 23 33, ,h h h = HFA ({0.5},{0.2,0.4},{0.5,0.6,0.8})  
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( ) ( )
3 31 1

3 3

1 1

1 (1 0.5) (1 0.2) (1 0.5) ,1 (1 0.5) (1 0.4) (1 0.5) ,
i i= =

= − − × − × − − − × − × −


∏ ∏  

 

( ) ( )
3 31 1

3 3

1 1

1 (1 0.5) (1 0.2) (1 0.6) ,1 (1 0.5) (1 0.4) (1 0.6) ,
i i= =

− − × − × − − − × − × −∏ ∏  

( ) ( )
3 31 1

3 3

1 1

1 (1 0.5) (1 0.2) (1 0.8) ,1 (1 0.5) (1 0.4) (1 0.8)
i i= =

− − × − × − − − × − × − 


∏ ∏  

 
{0.4152,0.4571,0.4687,0.5068,0.5691,0.6085}=  

 
Similarly, others can be obtained as follows: 

 
(1)

1 {0.3537, 0.4056, 0.4354, 0.4354, 0.4808, 0.4870, 0.5068, 0.5282,h =  

0.5519,0.5519,0.5879,0.6085} 

 
(3)
1 {0.4407,0.4687,0.5000,0.5783,0.5879,0.6085,0.6316,0.6893}h =  

 
(1)
2 ={0.5358,0.5691,0.5783,0.6085,0.7076,0.7286,0.7534,0.8290}h  

 
(2)
2 ={0.5358,0.5691,0.6316,0.6580,0.7286,0.7846}h  

 
(3)
2 ={0.4407,0.5000,0.5358,0.5783,0.5879,0.6316,0.6580,0.6729,h  

0.6893,0.7076,0.7286,0.7534}  

 
(1)
3 ={0.2886,0.3196,0.3537,0.3786,0.4056,0.4152,0.4354,0.4354,h  

0.4407,0.4687,0.5068,0.5358}  

 
(2)
3 ={0.2886,0.3160,0.3537,0.3786,0.3918,0.4152,0.4354,0.4687,0.5000}h  

 
(3)
3 ={0.2886,0.3458,0.3918,0.4152,0.4407,0.5000}h  

     

Step 2. Utilize the GHFWA operator (let 1λ = ) to aggregate all ( )k
ih  

( 1,2,3k = ) into a collective HFE ih  of the system iA  over all the other 

systems.  
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Step 3. Calculate the scores ( )is h ( 1,2,3i = ): 

 

1( ) 0.5364s h = , 2( ) 0.6471s h = , 3( ) 0.4018s h =  

     

then 2 1 3h h h> > , and thus 2 1 3A A A  . 

If we use the GHFG operator ( 1λ = ) in Step 1 and the GHFWG operator 

( 1λ = ) in Step 2, then we can get the scores ( )is h ( 1,2,3i = ): 

     

1( ) 0.4750s h = , 2( ) 0.5905s h = , 3( ) 0.3526s h =  

     

which indicate that 2 1 3A A A  . 

From this example, we can see that the hesitant fuzzy preference relation can 
involve more useful information and can express the uncertain and valueless more 
deeply. We can also find that we obtain the same conclusion by using the 
GHFWA and GHFWG operators, but there are slightly differences between them, 
that is, the former concerns the overall evaluation values while the latter pays 
more attention to the single one. 

3.2   Hesitant Multiplicative Preference Relations 

Multiplicative preference relation is another important tool to express the DMs’ 
preferences over alternatives described as: let 1 2{ , , , }nA A A A=   be a set of 

alternatives, then ( )ij n nB b ×=  is called a multiplicative preference relation (Saaty 

1980) on A A´ , whose element ijb  estimates the dominance of the alternative 

iA  over jA , and is characterized by a ratio scale such as Saaty’s ratio scale such 

that 
1
,9

9ijb
é ù
Î ê ú
ê úë û

, and 1ij jib b = , , 1, 2, ,i j n=  . 1iib =  indicates indifference 

between jA  and iA ; 1ijb >  indicates that iA  is preferred to jA , especially, 

9ijb =  indicates that iA  is absolutely preferred to jA ; 1ijb <  indicates that 

jA  is preferred to iA , especially, 
1

9ijb =  indicates that jA  is absolutely 

preferred to iA . If a decision organization constructed by a lot of DMs is asked to 

provide the estimation of the degrees to which iA  is preferred to jA  ( i j≠ ) by 

using the ratio scale (Saaty 1980), and some DMs provide 1
ijr , some provide 2

ijr  
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and the others provide 3
ijr , where 1 1 3 1

, , ,9
9ij ij ijr r r
     ∈   

, then the preference 

information ijr  that iA  is preferred to jA  can be represented by 

{ }1 2 3, ,ij ij ij ijr r r r=  which we call the HME (Xia and Xu 2011c). For the alternatives 

iA  and kA ( k i j≠ ≠ ) , some DMs in the decision organization may provide 
1
ikr , and the others may provide 2

ikr , then the preference information ikr  that iA  

is preferred to kA  can be considered as a HFE { }1 2,ik ik ikr r r= . For the 

alternatives kA  and lA ( k i j l≠ ≠ ≠ ), all the DMs in the decision organization 

may agree the value 1
klr , then the preference information ikr  that kA  is preferred 

to lA  can be considered as a HFE { }1
kl klr r= . In such cases, we can not consider 

the decision organization as one or two or three DMs, but just as a whole providing 
all the possible preference information about alternatives. Furthermore, all the 

preference values ijr ( , 1, 2, ,i j n=  ) can construct the hesitant multiplicative 

preference relation ( )ij n n
R r A A

×
= ⊂ × . 

Based on the above analysis, we firstly introduce the definition of hesitant 
multiplicative preference relation as follows: 

     
Definition 3.2 (Xia and Xu 2013).  A hesitant multiplicative preference relation 

R  on the set A  is presented by a matrix ( )ij n n
R r A A

×
= ⊂ × , where ijr =   

{ }| 1,2, ,
ij

t
ij rr t l=   is a HME indicates that all the possible degrees to which iY  

is preferred to jY . Moreover, ijr  should satisfy: 

     
( 1)( ) 1rji
l tt

ij jir r
σσ − +

= , {1}iir = , 
ij jir rl l= , , 1, 2, ,i j n=          (3.6) 

     
For a group decision making problem, let 1 2{ , , , }nA A A A=   be  

a discrete set of alternatives, kD 0( 1, 2, , )k p=   the set of decision 

organizations and 
01 2( , , , )pυ υ υ υ Τ=   the weight vector of 

kD 0( 1,2, , )k p=  , 

where 
0

1

1
p

i
i

υ
=

=  and [0,1]kυ ∈ , 01,2, ,k p=  . The decision organization 

kD  provides all the possible preference values for each pair of alternatives by 

using Saaty’s scale, and constructs the hesitant multiplicative preference relation 
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( )( )k
k ij n n

R r
×

= . In the following, we introduce a method for group decision 

making based on the hesitant multiplicative preference relations (Xia and Xu 
2013): 

     
Step 1. Utilize the GHMA (or GHMG) operator to aggregate all 

( )k
ijr ( 1, 2, ,j n=  ) corresponding to the alternative iA , and then get the 

averaged HME ( )k
ir  of the alternative iA  over all the other alternatives for the 

decision organization kD : 

( )k
ir = GHMA ( ) ( )

1

( ) ( ) ( ) ( )
1 2

1

1
, , ,

n
k k k k

i i in ij
j

r r r r
n

λλ
λ =

 = ⊕ 
 

  , 1, 2, ,i n=    (3.7) 

     
or 

     

( )k
ir = GHMG ( ) ( )

1
( ) ( ) ( ) ( )
1 2

1

1
, , ,

n
k k k k n

i i in ij
j

r r r rλ λ
λ =

 
= ⊗ 

 
 , 1, 2, ,i n=     (3.8)    

     
where λ  is a positive real number. 

     
Step 2. Utilize the GHMWA (or the GHMWG) operator to aggregate all 

( )k
ir ( 01,2, ,k p=  ) into a collective HME ir  of the alternative iA  over all 

the other alternatives: 
     

ir = GHMWA ( ) ( )0
0

1

( )(1) (2) ( )

1
, , ,

p
p k

i i i k i
k

R R R r
λλ

λ υ
=

 = ⊕ 
 

  , 1, 2, ,i n=    (3.9) 

     
or 

     

ir = GHMWA ( )0( )(1) (2), , , p
i i ir r rλ = ( )0

1

( )

1

k
p

k
i

k
r

λυ
λ

=

 ⊗ 
 

 , 1, 2, ,i n=    (3.10)                  

     

where λ  is a positive real number. 
     

Step 3.  Calculate the scores of ir ( 1, 2, ,i n=  ), and then rank all the 

alternatives iA ( 1, 2, ,i n=  ) and select the best one in accordance with the 

values of ( )is r ( 1, 2, ,i n=  ). 
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In Example 3.1, if we use hesitant multiplicative preference relations to express 
the DMs’ preferences, then the results are listed in Tables 3.4-3.6 (Xia and Xu 
2013). 

     
Table 3.4. The hesitant multiplicative preference relation 1R  

 1A  2A  3A  

 

1A  

 
{1} 

1 1 1
, ,

8 5 2
 
 
 

 
 

{3,5,7,9} 

2A  {2,5,8} {1} {4,6,9} 

3A  1 1 1 1
, , ,

9 7 5 3
 
 
 

 
1 1 1

, ,
9 6 4
 
 
 

 {1} 

  
Table 3.5. The hesitant multiplicative preference relation 2R  

 1A  2A  3A  

 

1A  

 
{1} 

1 1
,

5 2
 
 
 

 
 

{5,6,8} 

2A  {2,5} {1} {2,4,7,9} 

3A  1 1 1
, ,

8 6 5
 
 
 

 
1 1 1 1

, , ,
9 7 4 2
 
 
 

 {1} 

 
Table 3.6. The hesitant multiplicative preference relation 3R  

 1A  2A  3A  

1A  {1} 1 1 1 1
, , ,

7 5 4 3
 
 
 

 {2,4} 

2A  {3,4,5,7} {1} {3,8,9} 

3A  1 1
,

4 2
 
 
 

 
1 1 1

, ,
9 8 3
 
 
 

 {1} 
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The following steps are given to get the optimal system: 
     

Step 1. Utilize the GHMA operator (without loss of generality, let 1λ = ) to 

aggregate all ( )k
ijr ( 1, 2,3j = ) corresponding to the alternative iA , and then get 

the averaged HME ( )k
ir  of the alternative iA  over all the other alternatives for 

the decision organization kD , for example: 

     
(1)

1r = {1.0801,1.1253,1.2894,1.3811,1.4329,1.6207,1.6207,1.6777,1.8231,  

     
1.8845,1.8845,2.1072}  

     
(2)

1r = {1.4329,1.5612,1.6207,1.7589,1.7850,2.0000} 

     
(3)

1r = {0.8998,0.9310,0.9574,1.0000,1.2525,1.2894,1.3208,1.3713}  

     
(1)

2r = {2.1072,2.4760,2.9149,2.9149,3.3795,3.4814,3.9324,4.0133,4.6462} 

     
(2)

2r = {1.6207,2.1072,2.3019,2.6342,2.9149,2.9149,3.5789,3.9324} 

     
(3)

2r = {2.1748,2.420,2.6342,3.0000,3.1602,3.3089,3.4814,3.6416,3.7622,  

         3.9324,4.2415,4.4288} 

     
(1)

3r = {0.3516,0.3644,0.3738,0.3867,0.4057,0.4095,0.4190,0.4363,0.4422,  

       0.4598,0.4938}  

     
(2)

3r = {0.3572,0.3700,0.3738,0.3867,0.3998,0.4116,0.4288,0.4422,0.5000,  

       0.5183,0.5326}  

     
(3)

3r = {0.3756,0.4057,0.4618,0.4938} 

     

Step 2. Utilize the GHMWA operator (let 1λ = ) to aggregate all ( )k
ir  

( 1, 2,3k = ) into a collective HME ir  of the system iA  over all the other 

systems. 
     

Step 3. Calculate the scores ( )is r ( 1,2,3i = ): 
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1( ) 1.3601s r = , 2( ) 3.1198s r = , 3( ) 0.4501s r =  

     

then 2 1 3r r r> >  and thus 2 1 3A A A  . 

If we use the GHMG operator ( 1λ = ) in Step 1 and the GHMWG operator 

( 1λ = ) in Step 3, then we can get the scores ( )is r ( 1,2,3i = ): 

     

1( ) 0.7476s r = , 2( ) 2.2366s r = , 3( ) 0.3243s r =  

     

indicating that 2 1 3A A A  . 

Form the above example, we can find that the GHMWA and GHMWG 
operators can obtain the same result, however, by analyzing the expressions of the 
GHMWA and GHMWG operators, we can easily find that the GHMWA operator is 
based the usual arithmetic average which pays more attention to the group opinion 
and the GHMWG operator is based on the geometric mean which mainly focuses on 
the individual opinion. In addition, the two methods can get the same result in this 
example, but in the former, the preference information of any two alternatives is 
expressed by HFE represented by the values between 0  and 1  which is a 
uniform distribution around 0.5  reflecting that the preference information of 
any two alternatives is distributed uniformly, while in the latter, the preference 
information of any two alternatives is represented by HME constructed by the 

values between 
1

9
 and 9 , which is a non-uniform distribution around 1 

reflecting that the preference information of any two alternatives is not distributed 
uniformly. We can choose the suitable method according the DMs’ preferences 
and the actual situations. 
3.3   Trans itivity and Multiplicative Consistency  

3.3   Transitivity and Multiplicative Consistency on Hesitant 
Fuzzy Preference Relation 

3.3   Trans itivity and Multiplicative Consistency  

In the decision making process, the lack of consistency on a preference relation may 
lead to an unreasonable result. On the other hand, in practical application, a prefect 
consistent preference relation is too hard for the DMs to obtain due to the different 
backgrounds, personal habits, the natural of human judgment, or vague knowledge 
about the preference degree of one alternative over another (Liao et al. 2013), 
especially if the number of alternatives is too large (Alonso et al. 2009).   

The investigation on consistency of the preference relation can generally involve 
the following two phases: (1) How to judge whether the preference relation 
considered is perfectly consistent or acceptably consistent or not; (2) How to adjust 
or repair the inconsistent preference relation until it is with acceptable consistency. 
As for the first phase, the concept of consistency has been traditionally defined in 
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terms of transitivity, such as weak transitivity, max-max transitivity, max-min 
transitivity, restricted max-min transitivity, restricted max-max transitivity, 
additive transitivity, and multiplicative transitivity (Tanino 1984, 1988; Szmidt and 
Kacprzyk 2002; Xu 2007b). Based on the above transitivity properties, some 
methods for measuring the consistency of a preference relation have been 
developed (Tanino 1984, 1988; Herrera-Viedma et al. 2004; Ma et al. 2006; Alonso 
et al. 2008; Dong et al. 2008; Xu and Cai 2011). Saaty (1980) derived a consistency 
ratio in analytic hierarchy process (AHP), also developed the concept of perfect 
consistency and acceptable consistency, and pointed out that the preference 
relation is of acceptable consistency if its consistency ratio is less than 0.1. 
However, the more common situation in practice is the preference relation 
possessing unacceptable consistency, which may mislead the ranking result. 
Therefore, we need to repair the consistency of the preference relation. Liao et al. 
(2013) utilized the multiplicative consistency to propose some methods for 
adjusting or repairing the inconsistency of hesitant fuzzy preference relations. 

In practical application, in order to choose the most desirable and reasonable 
solution(s) for a decision making problem, a group of DMs (or experts), who may 
sometimes come from different aspects, may be gathered together to evaluate the 
alternatives over the attributes for the sake of avoiding the limited knowledge, 
personal background, private emotion, and so on. Different DMs can have 
disagreeing preferences and then it is needed to propose some consensus reaching 
methods (Montero 1994; Cutello and Montero 1994; Tapia et al. 2012; Xia and Xu 
2011d). Liao et al. (2013) developed a consensus improving procedure of hesitant 
fuzzy preference relations in group decision making.  

3.3.1   Some Properties of Hesitant Fuzzy Preference Relation 

With Definition 3.1, we can easily derive the following result: 
 

Theorem 3.1 (Liao et al. 2013). The transpose ( )c c
ij n n

H h
´

=  of the hesitant 

fuzzy preference relation ( )
ij n n

H h
´

=  is also a hesitant fuzzy preference 

relation, where c
ij jih h= , , 1,2, ,i j n=  . 

 

Theorem 3.2 (Liao et al. 2013). Let ( )
ij n n

H h
´

=  be a hesitant fuzzy 

preference relation. If we remove the i th row and the i th column, then the 

remaining matrix ( 1) ( 1)( )ij n nH h - ´ -=  is also a hesitant fuzzy preference 

relation. 
 
When the DM evaluates the preference information, he/she may provide 

inconsistent preference values and thus constructs the inconsistent preference 
relation due to the complexity of the considered problem or other reasons.  
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The hesitant fuzzy preference relation ( )
ij n n

H h X X
´

= Ì ´  should 

satisfy the following transitivity properties (Liao et al. 2013): 

(1) If 
ik kj ij
h h hÅ ³ , for all , , 1,2,...,i j k n= , then we say H  satisfies 

the triangle condition. 
 

(2) If {0.5}
ik
h ³ , {0.5}

kj
h ³ , then {0.5}

ij
h ³ , for all 

, , 1,2,...,i j k n= , then we say H  satisfies the weak transitivity property. 

 

(3) If min{ , }
ij ik kj
h h h³ , for all , , 1,2,...,i j k n= , then we say H  

satisfies max-min transitivity property. 
 

(4) If max{ , }ij ik kjh h h≥ , for all , , 1,2,...,i j k n= , then we say H  

satisfies max-max transitivity property. 
 

(5) If {0.5}
ik
h ³ , {0.5}

kj
h ³ , then min{ , }ij ik kjh h h³ , for all 

, , 1,2,..., ,i j k n=  then we say H  satisfies the restricted max-min 

transitivity property. 
 

(6) If {0.5}
ik
h ³ , {0.5}

kj
h ³ , then max{ , }ij ik kjh h h³ , for all 

, , 1,2,..., ,i j k n=  then we say H  satisfies the restricted max-max 

transitivity property. 
 
The weak transitivity is the usual and basic property which can be interpreted as 

follows: If the alternative iA  is preferred to kA , and kA  is preferred to jA , 

then iA  should be preferred to jA ; If the DM who is logic and consistent does not 

want to draw inconsistent conclusions, he/she should firstly ensure that the 
preference relation satisfies the weak transitivity. However, the weak transitivity  
is the minimum requirement condition to make sure that the hesitant  
fuzzy preference relation is consistent. There are another two conditions named 
additive transitivity and multiplicative transitivity which are more restrictive than 
weak transitivity and can imply reciprocity. The additive transitivity can be 
generalized to accommodate the hesitant fuzzy preference relation in terms of 

( ) ( ) ( ){0.5} {0.5} {0.5}ik kj ijh h h- Å - = - , for all , ,i j k = 1,2,...,n . The 

multiplicative transitivity is an important property of the fuzzy preference relation 

( )ij n nU u ×= , which was firstly introduced by Tanino (1988) and shown as: 
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ji kj ki

ij jk ik

u u u
u u u
⋅ =                            (3.11) 

 
where iju  denotes a ratio of preference intensity for the alternative iA  to that for 

jA , in another words, iA  is iju  times as good as jA , and [0,1]iju Î , for all 

, 1,2,...,i j n= . As to the multiplicative transitivity proposed by Tanino (1988), 

it might bring some difficulties in meaning, especially some literature assumes an 
absolute scale for fuzzy sets. To handle this issue, some related work has been 
done by Montero (1994), Cutello and Montero (1994), et al., devoted to rationality 
measures and the dimensions of preferences. Due to the existence of intermediate 
states between extreme rationality and extreme irrationality, Montero (1994) 
proposed a non-absolutely irrational aggregation rules. After that, Cutello and 
Montero (1994) extended the rationality measures to fuzzy preference relations. 
Absolute scale and rationality measures are issues to be further studied, which we 
will focus on in the future. 

Even though both additive transitivity and multiplicative transitivity can be 
used to measure the consistency, the additive consistency may produce the 
unreasonable results. Thus, in this section, we shall take the multiplicative 
transitivity to verify the consistency of a hesitant fuzzy preference relation. 

The condition of multiplicative transitivity can be rewritten as follows: 
 

ij jk ki ik kj jiu u u u u u=                         (3.12) 

 
and in the case where ( , ) {(0,1), (1,0)}ik kju u Ï , Eq.(3.12) is equivalent to the 

following (Chiclana et al. 2009): 
 

              
(1 )(1 )

ik kj
ij

ik kj ik kj

u u
u

u u u u
=

+ - -
                  (3.13) 

 
and if ( , ) {(0,1), (1,0)}ik kju u Î , we stipulate 0iju = . 

Inspired by Eq.(3.13), Liao et al. (2013) defined the concept of multiplicative 
consistent hesitant fuzzy preference relation: 

 

Definition 3.3 (Liao et al. 2013).  Let ( )
ij n n

H h
´

=  be a hesitant fuzzy 

preference relation on a fixed set X = { }1 2, , , nx x x , then ( )
ij n n

H h
´

=  is 

multiplicative consistent if 
 



3.3   Transitivity and Multiplicative Consistency 297 

 

( ) ( ){ }

( )( )

( ) ( ) ( )

( ) ( ) ( ) ( )

0, ( , ) {0},{1} , {1},{0}

( ) ( )
,

( ) ( ) 1 ( ) 1 ( )

ik kj

t t t
ij ik kj

t t t t
ik kj ik kj

h h

h h x h x
otherwise

h x h x h x h x

s s s

s s s s

ìï Îïïïï= íïïï + - -ïïî

,  

                                          for all i k j£ £        (3.14) 

where ( )( )t
ik
h xs  and ( )( )t

kj
h xs  are the t th smallest values in ( )

ik
h x  and 

( )
kj
h x , respectively. 

 
Theorem 3.3 (Liao et al. 2013). Any hesitant fuzzy preference relation 

2 2
( )

ij
H h

´
=  is multiplicative consistent. 

Proof (Liao et al. 2013). Suppose that { }(1) (2) ( )
12 12 12 12, , , nh h h hs s s=  , then, 

21h =  { }( ) ( 1) (1)
12 12 121 ,1 , ,1n nh h hs s s-- - - . Thus, 

       

( )
(1) (1)

(1)12 12
12(1) (1)

12 12

0.5 ( ) 0.5 ( )
( )

0.50.5 ( ) 0.5 1 ( )

h x h x
h x

h x h x

s s
s

s s
= =

+ -
       (3.15) 

 
Similarly, 

       

( )
(2) (2)

(2)12 12
12(2) (2)

12 12

0.5 ( ) 0.5 ( )
( )

0.50.5 ( ) 0.5 1 ( )

h x h x
h x

h x h x

s s
s

s s
= =

+ -
       (3.16) 

  

( )
( ) ( )

( )12 12
12( ) ( )

12 12

0.5 ( ) 0.5 ( )
( )

0.50.5 ( ) 0.5 1 ( )

n n
n

n n

h x h x
h x

h x h x

s s
s

s s
= =

+ -
       (3.17) 

 

which satisfies Eq.(3.14), additionally, when 
12

{0}h = , Eq.(3.14) also holds. 

Thus, 
2 2

( )
ij

H h
´

=  is multiplicative consistent, which completes the proof of 

Theorem 3.3. 
Based on Definition 3.3 and Theorems 3.1 and 3.3, in order not to increase the 

dimensions of the derived HFEs in the process of calculations, we can give the 
following definition: 

     

Definition 3.4 (Liao et al. 2013). Let ( )
ij n n

H h
´

=  be a hesitant fuzzy 

preference relation on a fixed set X = { }1 2, , , nx x x , then we call 
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( )
ij n n

H h
´

=  a prefect multiplicative consistent hesitant fuzzy preference 

relation, where 
     

( )( )
( ) ( )1

( ) ( ) ( ) ( )
1

( )

( )

( )

( ) ( )1
, 1

1 ( ) ( ) 1 ( ) 1 ( )

, 1

( )

{0.5},

1 ( ),

t tj
ik kj

t t t t
k i ik kj ik kj

t
ij

t
ij

t
ji

h x h x
i j

j i h x h x h x h x

h i j

h x

i j

h x i j

s s

s s s s

s

s

s

-

= +

ìïï + <ïï - - + - -ïïïïïïïï + =ïïïï= íïïï =ïïïïïïïï - >ïïïïïî

å

    

(3.18) 
     

and ( )( )t
ij
h xs , ( )( )t

ik
h xs  and ( )( )t

kj
h xs  are the t th smallest values in ( )

ij
h x , 

( )
ik
h x  and ( )

kj
h x , respectively, and 1,2, ,t l=  , l = { }max ,

ik kjh hl l . 

     

Definition 3.5 (Liao et al. 2013). Let ( )
ij n n

H h
´

=  be a hesitant fuzzy 

preference relation on a fixed set X =  { }1 2, , , nx x x , then we call 

( )
ij n n

H h
´

=  an acceptable multiplicative consistent hesitant fuzzy preference 

relation, if  
     

        0( , )d H H q<                            (3.19) 

     

where ( , )d H H  is the distance measure between the given hesitant fuzzy 

preference relation H  and its corresponding prefect multiplicative consistent 

hesitant fuzzy preference relation H  which can be calculated by Eqs.(3.11) and 
(3.12), and 0q  is the consistency level. Without loss of generality, we usually let 

0 0.1q =  in practice. 

3.3.2   Iterative Algorithm for Improving Consistency of Hesitant 
Fuzzy Preference Relation 

In the general case, the hesitant fuzzy preference relation H  constructed by the 
DM in the decision making problem is generally with unacceptable multiplicative 
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consistency which means 0( , )d H H q> . Thus we need to adjust the elements in 

the hesitant fuzzy preference relation in order to improve the consistency. For the 
sake of choosing the most desirable alternative, below we propose an iterative 
algorithm to repair the consistency level of the hesitant fuzzy preference relation 
(Liao et al. 2013): 

     
(Algorithm 3.1)  
Step 1. Suppose that k  is the number of iterations, d  is the step size, 
0 1kl d£ = £  and 0q  is the consistency level. Let 1k = , and construct 

the prefect multiplicative consistent hesitant fuzzy preference relation 

( )ij n n
H h

´
=  from ( )( ) ( )k k

ij n n
H h

´
=  by Eq.(3.18).  

     

Step 2. Calculate the deviation ( )( ),kd H H  between H  and ( )kH  by using:  

( )( ) ( ) ( ) ( )
Hamming

1 1 1

1 1
,

( 1)( 2)

hij

ij

ln n
k k t t

ij ij
i j th

d H H h h
n n l

s s

= = =

é ù
ê ú= -ê ú- - ê úë û

åå å   (3.20) 

or 

( )
1
2

2( ) ( ) ( ) ( )
Euclidean

1 1 1

1 1
,

( 1)( 2)

hij

ij

ln n
k k t t

ij ij
i j th

d H H h h
n n l

s s

= = =

é ùæ ö÷çê ú÷ç= - ÷ê úç ÷ç- - ÷çê úè øë û
åå å   

(3.21) 

where ( ) ( )k t
ijh
s  and ( )t

ij
h s  are the t th smallest values in ( )k

ijh  and 
ij
h , 

respectively. If ( )( , )kd H H  0q< , then output ( )kH ; Otherwise, go to the next 

step. 
     

Step 3. Repair the inconsistent multiplicative hesitant fuzzy preference relation 
( )kH  to ( ) ( )( )k k

ij n nH h ´=


 by using the following equations:  

     

  (3.22) 
     

where ( ) ( )k t
ijh
s


, ( ) ( )k t

ijh
s  and ( )t

ij
h s  are the t th smallest values in ( )k

ijh


, ( )k
ijh  

and 
ij
h , respectively. Let ( 1) ( )k kH H+ =


 and 1k k= + , then go to Step 2. 
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Example 3.2 (Liao et al. 2013). Suppose that a DM provides his/her preference 
information over a collection of alternatives ( 1,2,3, 4)iA i =  in HFEs and thus 

constructs the following hesitant fuzzy preference relation: 
     

{0.5} {0.1, 0.4} {0.1,0.2} {0.4, 0.5, 0.6}

{0.6, 0.9} {0.5} {0.3, 0.8} {0.3, 0.6}

{0.8,0.9} {0.2,0.7} {0.5} {0.2, 0.7}

{0.4, 0.5, 0.6} {0.4,0.7} {0.3, 0.8} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

     

Firstly, let 1k =  and (1)H H= , then we construct the prefect 

multiplicative hesitant fuzzy preference relation ( )
ij n n

H h
´

=  from (1)H  by 

Eq.(3.18).  

We take 
14
h  as an example, i.e., 

     

( )( ) ( )( )
(1) (1) (1) (1)

(1) 12 24 13 34
14 (1) (1) (1) (1) (1) (1) (1) (1)

12 24 12 24 13 34 13 34

1
2 1 1 1 1

h h h h
h

h h h h h h h h

s s s s
s

s s s s s s s s

æ ö÷ç ÷ç= + ÷ç ÷ç ÷+ - - + - - ÷çè ø
 

     

1 0.1 0.3 0.1 0.2
2 0.1 0.3 (1 0.1)(1 0.3) 0.1 0.2 (1 0.1)(1 0.2)

æ ö´ ´ ÷ç ÷= +ç ÷ç ÷ç ´ + - - ´ + - -è ø
 

     
0.036=  

     

( )( ) ( )( )
(2) (2) (2) (2)

(2) 12 24 13 34
14 (2) (2) (2) (2) (2) (2) (2) (2)

12 24 12 24 13 34 13 34

1
2 1 1 1 1

h h h h
h

h h h h h h h h

s s s s
s

s s s s s s s s

æ ö÷ç ÷ç= + ÷ç ÷ç ÷+ - - + - - ÷çè ø
 

     
1 0.4 0.6 0.2 0.7
( )

2 0.4 0.6 (1 0.4)(1 0.6) 0.2 0.7 (1 0.2)(1 0.7)
´ ´

= +
´ + - - ´ + - -

 

0.434=  
     

Hence, in the similar way, we can obtain 
     

{0.5} {0.1,0.4} {0.046,0.727} {0.036,0.434}

{0.6,0.9} {0.5} {0.3,0.8} {0.097,0.903}

{0.273,0.954} {0.2,0.7} {0.5} {0.2, 0.7}

{0.566,0.964} {0.097,0.903} {0.3,0.8} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø
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Then, we use Eq.(3.20) to calculate the hesitant normalized Hamming distance 

between (1)H  and H : 
     

(1)

4 4
(1) ( ) ( )

Hamming
1 1 1

1 1
( , ) ( ) ( )

6

xij

ij

l

t t
ij ijHH

i j tx

d H H h x h x
l

s s

= = =

é ù
ê ú= -ê ú
ê úë û

åå å  

1 1 1
(| 0.1 0.046 | | 0.2 0.727 |) (| 0.4 0.036 | | 0.5 0.434 |

6 2 3
æç= - + - + - + -ççè

 

1 1
| 0.6 0.5 |) (| 0.3 0.097 | | 0.6 0.903 |) (| 0.8 0.273 |

2 2
+ - + - + - + -   

1
| 0.9 0.954 |) (| 0.4 0.5 |

3
+ - + -

| 0.5 0.566 | | 0.6 0.964 |)+ - + -  

1
(| 0.4 0.097 | | 0.7 0.903 |)

2
ö÷+ - + - ÷÷ø

0.2071=  

     
Without loss of generality, let 0 0.1q = , then (1)

Hamming 0( , ) 0.2071d H H q= < , 

which means that (1)H  is not a multiplicative consistent hesitant fuzzy preference 
relation. Therefore, it needs to repair the inconsistent multiplicative hesitant fuzzy 

preference relation (1)H  according to (1)H


 by Eq.(3.22), we hereby let 
0.8l = , then 

(1)

{0.5} {0.1,0.4} {0.054,0.624} {0.062,0.447,0.52}

{0.6,0.9} {0.5} {0.3,0.8} {0.124,0.866}

{0.376,0.946} {0.2,0.7} {0.5} {0.2,0.7}

{0.48,0.553,0.938} {0.134,0.876} {0.3,0.8} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

  

     

We let (2) (1)H H=


 and 2p = , then the hesitant normalized Hamming 

distance between (2)H  and H  can be calculated, i.e., (2)
Hamming( , ) 0.039d H H =  

0.1< . Since the hesitant normalized Hamming distance is less than the 

consistency level, we can draw a conclusion that (2)H  is the repaired 
multiplicative consistent hesitant fuzzy preference relation of H . 

In this example, we can also use Eq.(3.21) to calculate the hesitant normalized 
Euclidean distance instead of the hesitant normalized Hamming distance, and both 
of them can get the same result. 
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Beside Algorithm 3.1, the most directive method for repairing the inconsistency 
is returning the inconsistent multiplicative hesitant preference relation to the DM to 
reconsider constructing a new hesitant preference relation according to his/her new 
comparison until it has acceptable consistency. This algorithm can be described in 
details as follows (Liao et al. 2013): 

     
(Algorithm 3.2)  

     
Step 1. See Algorithm 3.1. 
       
Step 2. See Algorithm 3.1. 
     
Step 3. Return the inconsistent multiplicative hesitant fuzzy preference relation 

( )kH  to the DM to reconsider constructing a new hesitant fuzzy preference 

relation ( 1)kH +  according to the new judgments. Let 1k k= + , then go to 
Step 2. 

       
Both of the above two algorithms can guarantee that any multiplicative 

inconsistent hesitant fuzzy preference relation can be transformed into a hesitant 
preference relation with acceptable consistency level. But in practice, we usually 
use the former procedure because the latter may waste a lot of time and resources. 

3.3.3   Approach to Group Decision Making Based on 
Multiplicative Consensus of Hesitant Fuzzy Preference 
Relations 

Consider that there exist some same values in a HFE according to Definition 1.1, 
based on the operational laws in Definition 1.7, the following theorem holds: 

 
Theorem 3.4 (Liao et al. 2013). Suppose that 1h  and 2h  are two HFEs, then 

 
      

1 2 1 2h h h hl l lÅ = , 
1 2 1 2h h h hl l lÄ =                   (3.23) 

 
Similarly, it also holds when there are n  different HFEs, i.e., 
 

1 1

n
ii

i

n

hh
i

l l
=
Å

=

= , 
1 1

n
ii

i

n

hh
i

l l
=
Ä

=

=                  (3.24) 

 
From Theorem 3.4, we can see that the dimension of the derived HFE may 

increase as the addition or multiplicative operations are done, which may increase 
the complexity of the calculation. Thus, we need to develop some new methods to 
decrease the dimension of the derived HFE when we operate the HFEs. 
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Taking Eq.(1.32) as an example, we can obtain 
1 2( , , , )nHFWA h h hl =

1
i

n

h
i

l
=
 , 

which is also the same as Eqs.(1.33)-(1.35). Therefore, in order not to increase the 
dimensions of the derived HFEs in the process of calculations, we firstly adjust the 
operational laws in Definition 1.7 into the following forms: 

For convenience, when two or more HFEs are aggregated, we assume that they 
have the same length l ; Otherwise, the short ones should be extended according to 
the rules as mentioned above. 

 

Definition 3.6 (Liao et al. 2013).  Let 
j

h ( 1,2, ,j n=  ) be a collection of 

HFEs, and l  a positive real number, then 
 

(1) ( ){ }( ) , 1,2, ,th h t l
ll s= =  . 

 

(2) ( ){ }( )1 1 , 1,2, ,th h t l
lsl = - - =  . 

 

(3) { }( ) ( ) ( ) ( )
1 2 1 2 1 2 , 1,2, ,t t t th h h h h h t ls s s sÅ = + - =  . 

 

(4) { }( ) ( )
1 2 1 2 , 1,2, ,t th h h h t ls sÄ = =  . 

 

(5) ( )

1 1

1 (1 ), 1,2, ,
nn t

j j
j j

h h t ls

= =

ì üï ïï ïÅ = - - =í ýï ïï ïî þ
  . 

 

(6) ( )

1 1

, 1,2, ,
nn t

j j
j j

h h t ls

= =

ì üï ïï ïÄ = =í ýï ïï ïî þ
  , 

 

where ( )t
j

hs  is the t th smallest value in 
j

h . 

According to Definition 3.6, we can adjust the aggregation operators 
(1.32)-(1.35) into the following forms: 

 

Definition 3.7 (Liao et al. 2013).  Let 
j

h ( 1,2, ,j n=  ) be a collection of 

HFEs. An adjusted hesitant fuzzy weighted averaging (AHFWA) operator is a 

mapping nH H→  such that  
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AHFWA( )1 2
, , ,

n
h h h ( )

1

n

j j
j

w h
=

= Å ( )( )

1

1 1 | 1,2, ,
j

n wt
j

j

h t ls

=

ì üï ïï ï= - - =í ýï ïï ïî þ
   

(3.25) 
 

where ( )t
j

hs  is the t th smallest value in 
j

h , and ( )1 2, , , nw w w w
T=   is 

the weight vector of 
j

h ( 1,2, , )j n=  with [0,1]jw Î , 1,2,...,j n= , 

and 
1

1
n

j
j

w
=

=å . Especially, if 
1 1 1
, ,w

n n n

Tæ ö÷ç= ÷ç ÷çè ø
 , then the AHFWA 

operator reduces to the adjusted hesitant fuzzy averaging (AHFA) operator: 
 

AHFA( )1 2
, , ,

n
h h h =

1

1n

j
j

h
n=

æ ö÷çÅ ÷ç ÷çè ø ( )
1

( )

1

1 1 | 1,2, ,
n

t n
j

j

h t ls

=

ì üï ïï ï= - - =í ýï ïï ïî þ
     

(3.26) 
 

Definition 3.8 (Liao et al. 2013).  Let 
j

h ( 1,2, ,j n=  ) be a collection of 

HFEs and let AHFWG: nH H→ , if  
 

AHFWG( )1 2
, , ,

n
h h h

1
( ) j

n w
j

j
h

=
= Ä ( )( )

1

| 1,2, ,
j

n wt
j

j

h t ls

=

ì üï ïï ï= =í ýï ïï ïî þ
     (3.27) 

 
then AHFWG is called an adjusted hesitant fuzzy weighted geometric (AHFWG) 

operator, where ( )t
j

hs  is the t th smallest value in 
j

h , and 

( )1 2
,

n
w w w w

T
=   is the weight vector of 

j
h ( 1,2, , )j n=  , with 

0,1
j

w é ùÎ ê úë û , 1,2,...,j n= , and 
1

1
n

j
j

w
=

=å . In the case where 

1 1 1
, ,w

n n n

Tæ ö÷ç= ÷ç ÷çè ø
 , the AHFWG operator reduces to the adjusted hesitant fuzzy 

geometric (AHFG) operator: 
 

AHFG( )1 2
, , ,

n
h h h ( )

1

1

n
n

j
j

h
=

= Ä ( )
1

( )

1

| 1,2, ,
n

t n
j

j

h t ls

=

ì üï ïï ï= =í ýï ïï ïî þ
       (3.28) 
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In our daily life, in order to choose the most desirable and reasonable solution(s) 
for a decision making problem, people prefer to form a commitment or organization 
constructed by several DMs who may sometimes come from different aspects 
instead of just the single DM for the sake of avoiding the limited knowledge, 
personal background, private emotion, and so on. As mentioned above, people may 
provide the preference information by pairwise comparisons and thus construct 
their preference relations. If people in the commitment or organization express their 
preference values in HFEs, then some hesitant fuzzy preference relations can be 
constructed. 

The group decision making problem in hesitant fuzzy circumstance can be 
described as follows:  

Suppose that 1 2{ , , , }nA A A A=   is a discrete set of alternatives; 

kD (k =  01,2, , )p  are the decision organizations (each of which contains a 

collection of DMs), and u = 
0

T
1 2( , , , )pu u u  is the weight vector of the 

decision organizations with 
0

1

1
p

k
k

u
=

=å , [0,1]ku Î , 01,2, ,k p=  . The 

decision organization kD  provides all the possible preference values for each pair 

of alternatives, and constructs a hesitant fuzzy preference relation 

( )( ) ( )k k
ij n n

H h
´

= 0( 1,2, , )k p=  .  

Then, a collective hesitant fuzzy preference relation ( )ij n n
H h

´
=  of 

kH =  ( )ij n n
h

´
( 01,2, ,k p=  ) can be obtained by the AHFWA or AHFWG 

operator, i.e., 
       

( ) ( )
0

0 ( ) ( ) ( )

1 1

1 1 | 1,2, ,
k

pp wk k t
ij k ij ij

k k

h w h h t ls

= =

ì üï ïï ï= Å = - - =í ýï ïï ïî þ
  , 

, 1,2, ,i j n=      (3.29) 

       
and 

       

( ) ( ) 
0

0 ( ) ( ) ( )

1 1

| 1,2, ,
k k

pp w wk k t
ij ij ij

k k

h h h t ls

= =

ì üï ïï ï= Ä = =í ýï ïï ïî þ
 , , 1,2, ,i j n=     

(3.30) 
       

where ( ) ( )k t
ij
h s  are the t th smallest value in ( )k

ij
h . 

Now we introduce a consensus improving procedure of hesitant fuzzy 
preference relations in group decision making (Liao et al. 2013): 
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(Algorithm 3.3)  
 

Step 1.  Let ( ) ( )( )( )( )( ) ( )k k
ij n n

H h
ll

´
= 0( 1,2, , )k p=   and 1l = . We 

construct the prefect multiplicative consistent hesitant fuzzy preference relations 

( ) ( )( )( )( )( ) ( )k k
ij n n

H h
ll

´
=  from ( ) ( )( )( )( )( ) ( )k k

ij n n
H h

ll

´
=  by Algorithm 3.1 

(or Algorithm 3.2). 
 

Step 2.  Aggregate all the individual prefect multiplicative consistent hesitant 

fuzzy preference relations ( ) ( )( )( )( )( ) ( )k k
ij n n

H h
ll

´
=  into a collective hesitant 

fuzzy preference relations ( ) ( )( )
( )( )

ij n n
H h

ll

´
=  by the AHFWA or AHFWG 

operator, where  
       

( ) ( )
0

0 ( ) ( ) ( )

1 1

1 1 | 1,2, ,
k

pp wk k t
ij k ij ij

k k

h w h h t ls

= =

ì üï ïï ï= Å = - - =í ýï ïï ïî þ
  , , 1,2, ,i j n=    

(3.31) 
       

and 
       

( ) ( )
0

0 ( ) ( ) ( )

1 1

| 1,2, ,
k k

pp w wk k t
ij ij ij

k k

h h h t ls

= =

ì üï ïï ï= Ä = =í ýï ïï ïî þ
  , , 1,2, ,i j n=      

(3.32) 
       

where ( ) ( )k t
ij
h s  is the t th smallest value in ( )k

ij
h . 

       
Step 3.  Calculate the deviation between each individual hesitant fuzzy preference 

relation ( )( )( )kH
l
= ( )( )

( )
( )k
ij n n
h

l

´
 and the collective hesitant fuzzy preference 

relations ( )( )
( )

( )
ij n n

H h
l

l

´
= , i.e., 

       

( )( )( )( ) ( ) ( )( ) ( ) ( ) ( )
Hamming

1 1 1

1 1
,

( 1)( 2)

hij

ij

ln n
k k t t

ij ij
i j th

d H H h h
n n l

l l l s l s

= = =

é ù
ê ú= -ê ú- - ê úë û

åå å   

(3.33) 
       

or 
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( )( )
1
2

( ) 2( ) ( ) ( )( ) ( ) ( ) ( )
Euclidean

1 1 1

1 1
,

( 1)( 2)

hij

ij

ln n
k k t t

ij ij
i j th

d H H h h
n n l

l l l s l s

= = =

é ùæ ö÷çê ú÷ç= - ÷ê úç ÷ç- - ÷çê úè øë û
åå å  

                                                           (3.34) 

If ( )( ) ( ) ( )
0( ) ,kd H Hl l q£ , for all 01,2, ,k p=  , where 0q  is the 

consensus level, then go to Step 5; Otherwise, go to the next step. 
       

Step 4.  Let ( ) ( )( )
( 1)( 1)( ) ( )k k

ij n n
H h

ll ++

´
= , where  

       
( )( ) ( ) 1 ( ) ( )

( )( 1) ( )
( )( ) ( ) 1 ( ) ( ) ( )( ) ( ) 1 ( ) ( )

( ) ( )

( ) ( ) (1 ( ) (1 )

k t t
ij ijk t

ij k t t k t t
ij ij ij ij

h h
h

h h h p h

l s b l s b
l s

l s b l s b l s b l s b

-
+

- -=
+ - -

,  

, 1,2,...,i j n=    (3.35) 

       

where ( )( 1) ( )k t
ijh
l s+ , ( )( ) ( )k t

ijh
l s  and ( ) ( )t

ijh
l s  are the t th smallest values in 

( )( 1)k
ijh

l+ , ( )( )k
ijh

l  and ( )
ijh
l , respectively, (0,1)b Î . Let 1l l= + , then 

go to Step 2. 
       

Step 5.  Let ( )H H l= , and employ the AHFA or AHFG operator to fuse all the 

hesitant preference values 
ij
h ( 1,2,...,j n= ) corresponding to the object iA  

into the overall hesitant preference value 
i
h , i.e., 

       

i
h =AHFA( )1 2

1

1
, , ,

n

i i in ij
j

h h h h
n=

æ ö÷ç=Å ÷ç ÷çè ø


1
( )

1

1 (1 ) | 1,2, ,
n

t n
ij

j

h t ls

=

ì üï ïï ï= - - =í ýï ïï ïî þ
   

(3.36) 
       

or 
       

i
h =AHFG( )1 2

, , ,
i i in

h h h = ( )
1 1

( )

1 1

( ) | 1,2, ,
nn tn n

ij ij
j j

h h t ls

= =

ì üï ïï ïÄ = =í ýï ïï ïî þ
     

(3.37) 
       

where ( )t
ij
hs  is the t th smallest values in 

ij
h . 

       
Step 6. Rank all the objects corresponding to the methods given in Section 1.1. 
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This consensus improving procedure can be interpreted like this: Firstly, we can 
construct the prefect multiplicative consistent hesitant fuzzy preference relations 
for individual hesitant fuzzy preference relations given by the different decision 
organizations; Then a collective hesitant fuzzy preference relation can be obtained 
by aggregating the constructed prefect multiplicative consistent hesitant fuzzy 
preference relations. Hence, we can easily calculate the distance between each 
individual hesitant fuzzy preference relation and the collective hesitant fuzzy 
preference relation respectively. If the distance is greater than the given consensus 
level, we need to improve it; Otherwise it is acceptable. To improve the individual 
hesitant fuzzy preference relation, we fuse it with the collective hesitant fuzzy 
preference relation by using Eq.(3.36) or (3.37), and then get some new individual 
hesitant fuzzy preference relations, thus we can iterate until all the individual 
hesitant fuzzy preference relations are acceptable.  

The most directive method for repairing the inconsensus is returning the 
inconsistent hesitant fuzzy preference relations to the DMs to reconsider 
constructing new preference relations according to their new comparison until 
they have acceptable consensus. However, it wastes a lot of time and sometimes 
this ideal consensus is just a utopian consensus which is difficult to achieve. Based 
on two soft consensus criteria: the consensus measure and the proximity measure, 
Tapia García et al. (2012) presented a consensus model for the group decision 
making problems with interval fuzzy preference relations. They also designed an 
automatic feedback mechanism to help the DMs in consensus reaching process. 
Furthermore, Cabrerizo et al. (2009) developed a consensus model for group 
decision making problems with unbalanced fuzzy linguistic information based on 
the above two soft consensus criteria. In a multigranular fuzzy linguistic context, 
Mata et al. (2009) also proposed an adaptive consensus support model for the 
group decision making problems, which increases the convergence toward the 
consensus and reduces the number of rounds to reach it. These works are all 
without interactive. As to our procedure, it is also a decision making aid method 
with less interaction of the DMs, which can save a lot of time and can give a quick 
response to the urgent situations. 

Indeed, at the beginning of our procedure, we have two improving stages. Firstly, 
we need to obtain the prefect multiplicative consistent hesitant fuzzy preference 
relations, which are the improved forms of the hesitant fuzzy preference relations 
given by the DMs originally. Then we go to iterations, which are also based on 
improving the preference relations of the DMs. All these steps do not need to 
reevaluate the alternatives. However, it can make sufficient utilization of the 
original information. 

We now consider a group decision making problem that concerns the evaluation 
and ranking of the main factors of electronic learning (adapted from Chao and Chen 
2009) to illustrate Algorithm 2.3: 

       
Example 3.3 (Liao et al. 2013).  As the electronic learning (e-learning) not only 
can provide expediency for learners to study courses and professional knowledge 
without the constraint of time and space especially in an asynchronous distance 
e-learning system, but also may save internal training cost for some enterprises 
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organizations in a long-term strategy, meanwhile, it also can be used as an 
alternative self-training for assisting or improving the traditional classroom 
teaching, the e-learning becomes more and more popular along with the 
advancement of information technology and has played an important role in 
teaching and learning not only in different levels of schools but also in various 
commercial or industrial companies. Many schools and businesses invest 
manpower and money in e-learning to enhance their hardware facilities and 
software contents. Thus it is meaningful and urgent to determine which is the most 
important among the main factors which influence the e-learning effectiveness. 
Based on the research of Wang (2003) and Tzeng et al. (2007), there are four key 
factors (or attributes) to evaluate the effectiveness of an e-learning system. These 
four main factors are: (1) 1x : The synchronous learning; (2) 2x : The e-learning 

material; (3) 3x : The quality of web learning platform; (4) 4x : The self-learning. 

In order to rank the above four factors, a committee comprising three DMs 

kD ( 1,2, 3)k =  (whose weight vector is (0.3,0.4, 0.3)u T= ) is found. 

After comparing pairs of the factors (or attributes) ( 1,2, 3, 4)ix i = , the DMs 

kD (k =  1,2, 3)  give their preferences using HFEs, and then obtain the hesitant 

fuzzy preference relations as follows: 
                       

1

{0.5} {0.2,0.3,0.4} {0.4,0.5,0.6} {0.3,0.7}

{0.6,0.7,0.8} {0.5} {0.5,0.6} {0.3,0.4}

{0.4,0.5,0.6} {0.4,0.5} {0.5} {0.4,0.5}

{0.3,0.7} {0.6,0.7} {0.5,0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

2

{0.5} {0.3,0.4} {0.5,0.6,0.7} {0.3,0.4,0.6}

{0.6,0.7} {0.5} {0.4,0.7} {0.4,0.6}

{0.3,0.4,0.5} {0.3,0.6} {0.5} {0.6,0.7}

{0.4,0.6,0.7} {0.4,0.6} {0.3,0.4} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

3

{0.5} {0.2,0.4} {0.4,0.7} {0.3,0.6, 0.7}

{0.6,0.8} {0.5} {0.5,0.7} {0.3,0.6}

{0.3,0.6} {0.3,0.5,} {0.5} {0.4,0.6}

{0.3,0.4, 0.7} {0.4,0.7} {0.4,0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
To solve this problem, the following steps are given according to Algorithm 2.3: 
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Step 1.  Let ( ) ( )( )k
kH Hl =  and 1l= , we firstly construct respectively the 

prefect multiplicative consistent hesitant preference relations ( ) ( )( )
(1)(1)( ) ( )

4 4

k k
ijH h

´
=  

( 1,2, 3k = ) from ( ) ( )( )
(1)(1)( ) ( )

4 4

k k
ijH h

´
=

 
( 1,2, 3k = ) by Algorithm 2.1  

(or Algorithm 2.2): 
       

(1) (1)

{0.5} {0.2,0.3,0.4} {0.2,0.3,0.5} {0.202,0.361,0.5}

{0.6,0.7,0.8} {0.5} {0.5,0.6} {0.4,0.6}
( )

{0.5,0.7,0.8} {0.4,0.5} {0.5} {0.4,0.5}

{0.5,0.639,0.798} {0.4,0.6} {0.5,0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

(2) (1)

{0.5} {0.3,0.4} {0.222,0.609} {0.361,0.596,0.672}

{0.6,0.7} {0.5} {0.4,0.7} {0.5,0.845}
( )

{0.391,0.778} {0.3,0.6} {0.5} {0.6,0.7}

{0.328,0.404,0.639} {0.155,0.5} {0.3,0.4} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

(3) (1)

{0.5} {0.2, 0.4} {0.2,0.609} {0.202,0.639}

{0.6,0.8} {0.5} {0.5,0.7} {0.4,0.778}
( )

{0.391,0.8} {0.3,0.5} {0.5} {0.4,0.6}

{0.361,0.798} {0.222,0.6} {0.4, 0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
Step 2.  Fuse the individual prefect multiplicative consistent hesitant preference 

relations ( ) ( )( )
(1)(1)( ) ( )

4 4

k k
ijH h

´
=  into a collective prefect hesitant preference 

relation ( )(1)(1)
4 4( ) ( )ijH h ´=  by the AHFWA or AHFWG operator. We hereby 

take the AHFWA operator, i.e., Eq.(3.31), as an example, and then we obtain 
       

(1)

{0.5} {0.242,0.372,0.472} {0.209,0.447,0.579} {0.27,0.506,0.617}

{0.532,0.633,0.765} {0.5} {0.462,0.673} {0.442,0.771}

{0.426,0.571,0.792} {0.332,0.543} {0.5} {0.49,0.619}

{0.394,0.514,0.745} {0.256,0.563} {0.

H =

396,0.53} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
Step 3.  Calculate the deviation between each individual prefect multiplicative 

consistent hesitant preference relation ( ) ( )(1) (1)( ) ( )
4 4( )k k

ijH h ´=  and the 
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collective hesitant preference relation ( )(1)(1)
4 4( )ijH h ´= . In this example, we 

use Eq.(3.33) i.e. the hesitant normalized Hamming distance, as a representation, 
and then we have 

       

( )( )(1)(1) (1)
Hamming , 0.162d H H = , ( )(2) (1) (1)

Hamming ( ) , 0.128d H H =  

       

( )(3) (1) (1)
Hamming ( ) , 0.07d H H =  

Without loss of generality, we let the consensus level 0 0.1q = . We can see 

that both ( )(1) (1) (1)
Hamming ( ) ,d H H  and ( )(2) (1) (1)

Hamming ( ) ,d H H  are bigger 

than 0.1, then we need to improve these individual prefect multiplicative consistent 
hesitant fuzzy preference relations.  

Step 4.  Let 0.7b = , and by Eq.(3.35), we can construct respectively the new 

individual hesitant preference relations ( ) ( )(2) (2)( ) ( )
4 4( )k k

ijH h ´= ( 1,2, 3k = ) as 

below: 
       

(1) (2)

{0.5} {0.229,0.35,0.45} {0.206,0.401,0.556} {0.248,0.461,0.583}

{0.553,0.654,0.78} {0.5} {0.473,0.652} {0.429,0.725}
( )

{0.445,0.612,0.794} {0.352,0.53} {0.5} {0.463,0.584}

{0.425,0.552,0.762} {0.296,0.574}

H =

{0.427,0.551} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

(2) (2)

{0.5} {0.259,0.38,0.48} {0.213,0.463,0.588} {0.296,0.533,0.634}

{0.522,0.623,0.747} {0.5} {0.443,0.681} {0.459,0.796}
( )

{0.412,0.55,0.788} {0.322,0.56} {0.5} {0.523,0.644}

{0.374,0.481,0.715} {0.222,0.544}

H =

{0.366,0.491} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       

(3) (2)

{0.5} {0.229,0.38,0.48} {0.206,0.463,0.588} {0.248,0.504,0.624}

{0.522,0.623,0.776} {0.5} {0.473,0.681} {0.429,0.773}
( )

{0.412,0.55,0.794} {0.322,0.53} {0.5} {0.463,0.613}

{0.384,0.51,0.762} {0.246,0.574} {

H =

0.397,0.551} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
Let 2l = , then go back to Step 2. We fuse the individual hesitant preference 

relations ( )(2)( )kH ( 1,2, 3k = ) into a collective hesitant preference relation 

( )(2)(2)
4 4( ) ( )ijH h ´=  by the AHFWA operator (3.31):  
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(2)

{0.5} {0.241,0.371,0.471} {0.209,0.445,0.579} {0.268,0.504,0.616}

{0.532,0.633,0.766} {0.5} {0.461,0.673} {0.442,0.77}

{0.422,0.57,0.792} {0.331,0.542} {0.5} {0.488,0.618}

{0.393,0.512,0.744} {0.252,0.562} {0.

H =

394,0.528} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
Thus, the hesitant normalized Hamming distance between each individual 

prefect multiplicative consistent hesitant preference relation ( )(2)( )kH  and the 

collective hesitant preference relation (2)H  can be calculated as follows: 
       

( )(1) (2) (2)
Hamming ( ) , 0.048d H H = , ( )(2) (2) (2)

Hamming ( ) , 0.039d H H =  

       
 

       

Now all ( )( ) (2) (2)
Hamming ( ) , 0.1kd H H <  ( 1,2, 3k = ), then go to Step 5. 

       

Step 5.  Let (2)H H= , and employ the AHFA or AHFG operator to fuse all the 

hesitant preference values 
ij
h ( 1,2,...,j n= ) corresponding to the factor ix  

into the overall hesitant preference value 
i
h . We hereby use the AHFA operator to 

fuse the information. By Eq.(3.36), we have 
       

1
{0.315,0.458,0.545}h = , 

2
{0.485,0.537,0.694}h =  

       

3
{0.444,0.519,0.633}h = , 

4
{0.391,0.503,0.597}h =  

       

Step 6. Using the score function, we can get 
1

( ) 0.439s h = , 
2

( ) 0.572s h = , 

3
( ) 0.532s h = , and 

4
( ) 0.495s h = . As 

2 3 4 1
( ) ( ) ( ) ( )s h s h s h s h> > > , we 

can draw a conclusion that 2 3 4 1x x x x   , which denotes that the e-learning 

material is the most important factor influencing the affectivity of e-learning.  
Surely, in this example, we can also use the AHFWG and AHFG operators to 

fuse the HFEs in Steps 2 and 5, and we can also use the hesitant normalized 
Euclidean distance to calculate the deviation between each individual prefect 
multiplicative consistent hesitant preference relation and the collective prefect 
multiplicative consistent hesitant fuzzy preference relation in Step 3. 

       

( )(3) (2) (2)
Hamming ( ) , 0.02d H H =
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Since our procedure is a decision making aid method which is without 
interactive, in practical application, the DMs can change their preferences 
according to our algorithm in order to reach group consensus. For example, in 
Step 3, as we find that the obtained individual hesitant fuzzy preference relations 
are not with acceptable consensus, the DMs need to change their preferences. In 
this case, they can refer to our new constructed individual hesitant fuzzy 

preference relations ( ) ( )(2) (2)( ) ( )
4 4( )k k

ijH h ´=  ( 1,2, 3k = ) and judge whether they 

are with acceptable consensus or not. Interacting with the DMs frequently during 
the consensus process is very reliable and accurate but impracticable and time 
consuming. If the consensus must be urgently obtained, or the DMs cannot or are 
unwilling to modify their preferences, our procedure is suitable for handling that. 
Until all hesitant fuzzy preference relations reach group consensus, the selection of 
the optimal alternative can be derived easily. 

Furthermore, from Step 3, we can see that if we take the consensus level within 
the interval 00.07 0.128q£ £ , the result will keep the same. In other words, 

if the consensus level is fixed, small error measurements perhaps do not cause a 
complete different output, which is to say, our procedures are robust. For example, 
suppose that the third DM gives his preferences with another hesitant preference 
relation as: 

 

3

{0.5} {0.2,0.4} {0.4,0.7} {0.3,0.6, 0.7}

{0.6,0.8} {0.5} {0.6,0.8} {0.3,0.6}

{0.3,0.6} {0.2,0.4,} {0.5} {0.4,0.6}

{0.3,0.4, 0.7} {0.4,0.7} {0.4,0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è ø

  

       
In the following, we begin to check whether the output will be changed or not. 
       

Step 1.  The prefect multiplicative consistent hesitant preference relations of the 
third DM can be calculated easily, which is 

       

( )
(1)

(3)

{0.5} {0.2, 0.4} {0.2,0.609} {0.202,0.639}

{0.6, 0.8} {0.5} {0.6,0.8} {0.4,0.778}

{0.391, 0.8} {0.2, 0.4} {0.5} {0.4,0.6}

{0.361, 0.798} {0.222, 0.6} {0.4, 0.6} {0.5}

H

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷= ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è ø

  

       
Step 2.  The collective prefect hesitant preference relation can be derived by the 
AHFWA operator as: 
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(1)

{0.5} {0.242,0.372,0.472} {0.209,0.447,0.579} {0.27,0.506,0.617}

{0.532,0.633,0.765} {0.5} {0.497,0.710} {0.442,0.771}

{0.426,0.571,0.792} {0.332,0.543} {0.5} {0.49,0.619}

{0.394,0.514,0.745} {0.256,0.563} {0

H =

.396,0.53} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷çè ø

 

       
Step 3.  Calculate the deviation between each individual prefect multiplicative 
consistent hesitant preference relation and the collective hesitant preference relation 

(1)H : 

( )(1) (1) (1)
Hamming ( ) , 0.162d H H =

, ( )(2) (1) (1)
Hamming ( ) , 0.130d H H =

  

       

( )(3) (1) (1)
Hamming ( ) , 0.093d H H = 

 

Since the consensus level 0 0.1q = . We can see that both 

( )(1) (1) (1)
Hamming ( ) ,d H H  and ( )(2) (1) (1)

Hamming ( ) ,d H H  are bigger than 0.1, then 

we need to improve these individual prefect multiplicative consistent hesitant fuzzy 
preference relations.  

Step 4.  Let 0.7b = , we can construct respectively the new individual hesitant 

preference relations ( )
(2)

( )kH ( 1,2, 3k = ) as: 

       

( )
(2)

(1)

{0.5} {0.229,0.35,0.45} {0.206,0.401,0.556} {0.248,0.461,0.583}

{0.553,0.654,0.78} {0.5} {0.498,0.679} {0.429,0.725}

{0.445,0.612,0.794} {0.332,0.512} {0.5} {0.463,0.584}

{0.425,0.552,0.762} {0.296,0.574}

H =

{0.427,0.551} {0.5}
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( )
(2)

(2)

{0.5} {0.259,0.38,0.48} {0.213,0.463,0.588} {0.296,0.533,0.634}

{0.522,0.623,0.747} {0.5} {0.468,0.707} {0.459,0.796}

{0.412,0.55,0.788} {0.303,0.542} {0.5} {0.523,0.644}

{0.374,0.481,0.715} {0.222,0.544}

H =

{0.366,0.491} {0.5}

æ ö÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷÷ç ÷ç ÷ç ÷ç ÷ç ÷ç ÷è ø

 

       

( )
(2)

(3)

{0.5} {0.229,0.38,0.48} {0.206,0.463,0.588} {0.248,0.504,0.624}

{0.522,0.623,0.776} {0.5} {0.528,0.739} {0.429,0.773}

{0.412,0.55,0.794} {0.270,0.482} {0.5} {0.463,0.613}

{0.384,0.51,0.762} {0.246,0.574} {

H =

0.397,0.551} {0.5}
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Let 2l = , then go back to Step 2. The individual hesitant preference relations 
( ) (2)( )kH ( 1,2, 3k = ) can be fused into a collective hesitant preference relation 

(2)( )H  by the AHFWA operator:  

       

(2)

{0.5} {0.241,0.371,0.471} {0.209,0.445,0.579} {0.268,0.504,0.616}

{0.532,0.633,0.766} {0.5} {0.496,0.709} {0.442,0.77}

{0.422,0.57,0.792} {0.302,0.516} {0.5} {0.488,0.618}

{0.393,0.512,0.744} {0.252,0.562} {0

H =

.394,0.528} {0.5}
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Then, the hesitant normalized Hamming distance between each individual 

prefect multiplicative consistent hesitant preference relation ( )
(2)

( )kH  and the 

collective hesitant preference relation (2)H  can be calculated as: 
       

( )
(2)

(1) (2)
Hamming , 0.056d H H

æ ö÷ç =÷ç ÷çè ø
 

, ( )
(2)

(2) (2)
Hamming , 0.039d H H

æ ö÷ç =÷ç ÷çè ø
 

  

       

( )
(2)

(3) (2)
Hamming , 0.023d H H

æ ö÷ç =÷ç ÷çè ø
 

 

       

Now all ( )
(2)

( ) (2)
Hamming , 0.1kd H H

æ ö÷ç <÷ç ÷çè ø
 

 ( 1,2, 3k = ), then go to Step 5. 

       

Step 5.  Let (2)H H=  , and employ the AHFA operator to fuse all the hesitant 
preference values ijh ( 1,2, 3, 4j = ) corresponding to the factor ix  into the 

overall hesitant preference value ih : 

 

1 {0.315, 0.458,0.545}h = , 2 {0.494, 0.537, 0.703}h =  

3 {0.433,0.519, 0.628}h = , 4 {0.391,0.503,0.597}h =  

       
Step 6. Using the score function, we can get 1( ) 0.439s h = , 2( ) 0.578s h = , 

3( ) 0.527s h = , and 4( ) 0.495s h = . As 2 3 4 1( ) ( ) ( ) ( )s h s h s h s h> > > , we 

can draw a conclusion that 2 3 4 1x x x x   , which denotes that the e-learning 

material is also the most important factor influencing the affectivity of e-learning.  
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From the above example, it can be seen that although the third DM slightly 
changes his/her preference, the output of our procedure also keeps the same. Thus, 
our algorithm is robust and practicable. 

3.4   Regression Methods for Hesitant Fuzzy Preference 
Relations 

Since fuzzy preference relations (Orlovsky 1978) have been proven to be an 
effective tool used in decision making problems (Chiclana et al. 2001; Orlovsky 
1978; Tanino 1984), and have close relationship with hesitant fuzzy preference 
relations, Zhu and Xu (2013a) considered some techniques to transform hesitant 
fuzzy preference relations into fuzzy preference relations, so as to apply hesitant 
fuzzy preference relations to decision making through fuzzy preference relations. In 
order to do so, they concentrated on a selection process of preference degrees in 
hesitant fuzzy preference relations, which results into the “reduced fuzzy preference 
relations”. Two regression methods were developed to transform hesitant fuzzy 
preference relations into the reduced fuzzy preference relations based on the 
additive transitivity and the weak consistency.  

The transitivity property is used to represent the idea that the preference degree 
obtained by directly comparing two alternatives should be equal to or greater than 
the preference degree between those two alternatives obtained using an indirect 
chain of alternatives. This property is desirable to avoid contradictions reflected in 

preference relations. For a fuzzy preference relation ( )ij n nU u ×= , Tanino (1984) 

introduced an additive transitivity as follows: 
                          
                0.5,ij jk iku u u+ = +

  
for all , ,i j k                   

(3.38) 

       
Tanino (1988) also introduced a weak consistency as:  

       
0.5iju ≥ , 0.5jku ≥ → 0.5iku ≥ , for all , ,i j k              (3.39) 

       
which means that if the alternative iA  is preferred to the alternative jA , and the 

alternative
 jA  is preferred to the alternative kA , then the alternative iA  should 

be preferred to the alternative kA . This property verifies the condition that a 

logical and consistent person does not want to express his/her opinions with 
inconsistency, and is the minimum requirement for consistency. 

In the following, we introduce two regression methods for hesitant fuzzy 
preference relations, which depend on the additive transitivity and the weak 
consistency respectively. 

 
 



3.4   Regression Methods for Hesitant Fuzzy Preference Relations 317 

 

3.4.1   Regression Method of Hesitant Fuzzy Preference Relations 
Based on Additive Transitivity 

Herrera-Viedma et al. (2007) developed a method based on error analysis to 
measure the consistency levels of fuzzy preference relations. Motivated by this 
method, Zhu and Xu (2013a) used the additive transitivity and the error analysis to 
deal with the selection process of hesitant fuzzy preference relations so as to obtain 
the reduced fuzzy preference relation with the highest consistency level. 

Given a hesitant fuzzy preference relation, represented by a matrix ( )ij n nH h ×=  

A A⊂ × , where 1 2{ , , , }nA A A A=   is a fixed set of alternatives. According to 

the additive transitivity (3.38), all possible preference degrees of the pair of the 

alternatives ( , )i kA A  represented by a HFE ikh ( i k≠ ) can be estimated using 

an intermediate alternative jA ( , )j i k≠  as follows: 

0.5j
ik ij jkh h h= + −                         (3.40) 

where the operations “ + ” and “ - ” are defined as follows: 
 

Definition 3.9 (Zhu and Xu 2013a).  Let h , 1h  and 2h  be three HFEs, and b  

a real number, then we have 

1 1 2 2
1 2 1 2

,
{ }

h h
h h

γ γ
γ γ

∈ ∈
+ = + 

                     
(3.41) 

           
 

                          
{ }

h
h b b

γ
γ

∈
− = −                          

(3.42) 

 

In order to use Eq.(3.40) to estimate j
ikh , the alternatives associated with H

 
should generally be classified into several sets defined as follows:  

 

              { }( , ) | , {1, 2, , } ( )i kB A A i k n i k= ∈ ∧ ≠              
(3.43) 

 

{ }( , ) |  is an estimated HFEB
i k ikOV A A B h= ∈

         
(3.44) 

 

( )cB BKV OV=
                        

(3.45) 

 

{ }| , , ( , ), ( , )j B
ik j i j j kM A j i k A A A A KV= ≠ ∈

           
(3.46) 
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where B  is a set of all pairs of alternatives, BOV  is a set of pairs of alternatives 

whose preference degrees are represented by the HFE ikh , and we call it an 

estimated HFE; BKV  is the complement set of BOV  satisfying 
B BKV OV B= ; j

ikM  is the set of the intermediate alternatives 

jA ( ,j i k≠ ) that can be used to estimate j
ikh

 
by Eq.(3.40).  

Consequently, by Eq.(3.40), we may get several HFEs, j
ikh ( 1,2, ,j n=   

, )j i k≠  indicating all possible estimated preference degrees of the pair of 

alternatives ( , )i kA A . The regression method is to select the proper preference 

degrees
 
from the estimated HFE ikh  for all , 1, 2, , ,i k n i k= ≠  so as to 

obtain the reduced fuzzy preference relation. For this purpose, we first calculate an 
average estimated preference degree defined as follows: 

 

j
j ik

j
ikj

j ik

j
s ik

A M

ik

h
A M

S h

h
l

∈

∈

 
 
 
 =



                           

 
(3.47) 

 
where sS  is a function that indicates the summation of all elements in a set, j

ikh
l  

indicates the numbers of all possible preference degrees in j
ikh . 

Comparing the estimated HFE ikh  with its average estimated preference degree 

ikh , we define the error between them below:  

 
Definition 3.10 (Zhu and Xu 2013a).  A HFE indicating all possible errors 

between an estimated HFE ikh  and its average estimated preference degree ikh  is 

defined as: 
 

( )
2

3 ik ik ik

ik ik
h h

h
ε

ε ε
∈ −

 
=   

 


                     
(3.48) 

 

where the coefficient 
2

3
 is used to make sure each error in | |ikε  belongs to the 

unit interval [0,1] . 
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To choose a preference degree in ikh  associated with the lowest error according 

to Definition 3.10, we define a final preference degree *
ikh

 
satisfying 

( )
( )

2
min | |

3 ik ik ik

ik ik
h h

h
ε

ε ε
∈ −

 
=   

 


                 
(3.49) 

 
Collecting *

ikh
 
for all , 1, 2, , ,i k n i k= ≠ , we get the reduced fuzzy 

preference relation H  transformed from the hesitant fuzzy preference relation 
H . We now introduce the consistency measure to measure the consistency level  

of H .  
 

Definition 3.11 (Zhu and Xu 2013a).  For the reduced fuzzy preference relation 

H , the consistency level associated to the final preference degree *
ikh  is stated as: 

 

( )1 minik ikcl hε= −                       
 
(3.50) 

 
The consistency level associated to a particular alternative is defined as follows: 

 
Definition 3.12 (Zhu and Xu 2013a).  For the reduced fuzzy preference relation 

H , the consistency level associated to a particular alternative iA  is stated as: 

( )
, 1

2( 1)

n

ik ki
i k k

i

cl cl

cl
n

≠ =

+
=

−


                     

 
(3.51) 

 
With respect to all alternatives, we have 

 
Definition 3.13 (Zhu and Xu 2013a).  The consistency level of H  is stated as: 

1

n

i
i

H

cl
cl

n
==



                            

(3.52) 

 
Clearly, the bigger value of 

H
cl   

( [0,1]
H

cl ∈ ), the higher consistency level  

of H .  
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Based on the analysis above, and assume that a hesitant fuzzy preference 
relation, represented by a matrix ( )ij n n

H h A A
×

= ⊂ × , where 
1 2{ , , , }nA A A A=   

is a fixed set, the algorithm that transforms a hesitant fuzzy preference relation into 
the reduced fuzzy preference relation with the highest consistency level is 
developed as follows (Zhu and Xu 2013a):  

 
(Algorithm 3.4)  

Step 1.  Randomly locate a HFE, ikh ( )i k≠ , as the estimated HFE. According 

to Eq.(2.40), we calculate j
ikh

 
for all ,j i k≠ . 

Step 2.  Calculate the average estimated preference degree A
ikh

 
by Eq.(3.47), and 

choose a final preference degree *
ikh  by Eqs.(3.48) and (3.49).  

Step 3.  Repeat Steps 1 and 2 until all HFEs have been located as the estimated 
HFEs, then go to the next Step. 

Step 4.  Saving *
ikh

 
for

 
all , 1, 2, ,i k n i k∈ ≠ , we have the reduced fuzzy 

preference relation H . 

Step 5.  Calculating the consistency level of H  according to Eqs.(3.50)-(3.52), 

we get the consistency level of H .  
Step 6.  End.  

 
Example 3.4 (Zhu and Xu 2013a).  Assume a hesitant fuzzy preference relation: 

 

1

{0.5} {0.4,0.5} {0.6,0.7} {0.6}

{0.5,0.6} {0.5} {0.8} {0.4}

{0.3,0.4} {0.2} {0.5} {0.1,0.2}

{0.4} {0.6} {0.8,0.9} {0.5}

H

 
 
 =
 
 
 

 

 

Step 1. Locate the HFE, 12h , as the estimated HFE. According to Eq.(3.40), we 

have  
3
12 13 32 0.5 {0.3,0.4}h h h= + − =  , 4

12 14 42 0.5 {0.7}h h h= + − =   

 
Step 2. According to Eq.(3.47), we have 

 

12

12

12

12

(0.3 0.4) 0.7
0.467

2 1

j

j

j

j
s

j M

h
j M

S h

h
l

∈

∈

+ += = =
+

12
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By Eqs.(3.48) and (3.49), we have 
 

( )12 12 12

12 12

2
| | {0.044,0.022}

3 h h

h
ε

ε ε
∈ −

 
= =  

 


 

 

12

2
min( ) 0.022 0.5 0.467

3
hε = = −  

 
Thus, *

12 0.5h = .  

 
Step 3. Repeat Steps 1 and 2, we have  

 
*
13 0.7h = , 13min( ) 0.100hε = ; *

14 0.6h = , 14min( ) 0.189hε =  

 
*
21 0.5h = , 21min( ) 0.022hε = ;

 
*
23 0.8h = , 23min( ) 0.056hε =  

 
*
24 0.4h = , 24min( ) 0.100hε = ; *

31 0.3h = , 31min( ) 0.067hε =  

 
*
32 0.2h = , 32min( ) 0.056hε = ; *

34 0.2h = , 34min( ) 0.089hε =  

 
*
41 0.4h = , 41min( ) 0.189hε = ; *

42 0.6h = , 42min( ) 0.100hε =  
*
43 0.8h = , 43min( ) 0.089hε =  

 
Step 4. Saving *

ikh  for all , 1,2,3,4,i k i k= ≠ , we can get the reduced fuzzy 

preference relation 1H : 

 

1

0.5 0.5 0.7 0.6

0.5 0.5 0.8 0.4

0.3 0.2 0.5 0.2

0.4 0.6 0.8 0.5

H

 
 
 =
 
 
 

  

 
Step 5. According to Eq.(3.52), we have  

 



322 3   Hesitant Preference Relations 

 

12 0.978cl = , 21 0.978cl = , 13 0.900cl = , 31 0.933cl = , 14 0.811cl =   

 

41 0.811cl = , 23 0.944cl = , 32 0.944cl = , 24 0.900cl = , 42 0.900cl =  

 

34 0.911cl = , 43 0.911cl =
 

 
According to Eq.(3.53), we can get 

 

12 21 13 31 14 41
1

( ) ( ) ( )
0.902

6

cl cl cl cl cl cl
cl

+ + + + += =  

 

21 12 23 32 24 42
2

( ) ( ) ( )
0.941

6

cl cl cl cl cl cl
cl

+ + + + += =  

 

31 13 32 23 34 43
3

( ) ( ) ( )
0.924

6

cl cl cl cl cl cl
cl

+ + + + += =  

 

41 14 42 24 43 34
4

( ) ( ) ( )
0.874

6

cl cl cl cl cl cl
cl

+ + + + += =  

 
Furthermore, by Eq.(3.54), the consistency level of a hesitant fuzzy preference 

relation 1H  is: 

 

1

1 2 3 4 0.910
4H

cl cl cl cl
cl

+ + += =  

 
with the consistency level 91.0% . 

 
Step 6. End.  

 

For a hesitant fuzzy preference relation, ( )ij n n
H h

×
= , since each preference 

degree in ijh  is a possible value, as a more straightforward method, a hesitant 

fuzzy preference relation can be separated into all possible fuzzy preference 
relations, and  the fuzzy preference relation with the highest consistency level can 
be found out by comparing consistency levels of all possible fuzzy preference 
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relations. In order to illustrate the computation complexity of this “separation 
method”, we give the following example: 
 
Example 3.5 (Zhu and Xu 2013a).  Based on the same hesitant fuzzy preference 

relation, 1H , we can generate eight possible fuzzy preference relations from 1H  

denoted as follows: 
 

1
1

0.5 0.5 0.6 0.6

0.5 0.5 0.8 0.4

0.4 0.2 0.5 0.1

0.4 0.6 0.9 0.5

HU

 
 
 =
 
 
 

, 1
2

0.5 0.5 0.7 0.6

0.5 0.5 0.8 0.4

0.3 0.2 0.5 0.1

0.4 0.6 0.9 0.5

HU

 
 
 =
 
 
 

  

 

1 1
3 4

0.5 0.5 0.6 0.6 0.5 0.5 0.7 0.6

0.5 0.5 0.8 0.4 0.5 0.5 0.8 0.4
,

0.4 0.2 0.5 0.2 0.3 0.2 0.5 0.2

0.4 0.6 0.8 0.5 0.4 0.6 0.8 0.5

H HU U

   
   
   = =
   
   
   

    

 

1 1
5 6

0.5 0.4 0.6 0.6 0.5 0.4 0.7 0.6

0.6 0.5 0.8 0.4 0.6 0.5 0.8 0.4
,

0.4 0.2 0.5 0.1 0.3 0.2 0.5 0.1

0.4 0.6 0.9 0.5 0.4 0.6 0.9 0.5

H HU U

   
   
   = =
   
   
   

  

 

1
7

0.5 0.4 0.6 0.6

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.2

0.4 0.6 0.8 0.5

HU

 
 
 =
 
 
 

, 1
8

0.5 0.4 0.7 0.6

0.6 0.5 0.8 0.4

0.3 0.2 0.5 0.2

0.4 0.6 0.8 0.5

HU

 
 
 =
 
 
 

 

 
According to the consistency measure of fuzzy preference relations introduced 

by Herrera-Viedma et al. (2007), we can get the consistency levels of 1H
iU  

( 1, 2,...,8)i =  denoted by 
 

1
1

89.63%
H

U
cl = , 

1
2

91.76%
H

U
cl = , 

1
3

90.56%
H

U
cl = , 

1
4

92.69%
H

U
cl =  
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1
5

88.52%
H

U
cl = , 

1
6

90.65%
H

U
cl = , 

1
7

89.44%
H

U
cl = , 

1
8

91.57%
H

U
cl =  

 
Since  

 

1 1 1 1 1 1 1 1
7 54 2 8 6 3 1

H H H H H H H H
U U U U U U U U

cl cl cl cl cl cl cl cl> > > > > > >  

 
1

4
HU  is the reduced fuzzy preference relation with the highest consistency level.  

Obviously, 1
4 1
HU H=  , the same results can be got from the proposed method 

and the separation method. Comparing Examples 3.4 and 3.5, in order to obtain the 
reduced fuzzy preference relation with the highest consistency level, the numbers of 
operational times needed by our regression method and the separation method are 
2 ( 1) 1n n n− + +  and ( ( 1) 1)q n n n− + +  ( q  is the number of all possible 

fuzzy preference relations separated from a hesitant fuzzy preference relation), 
respectively. Since 2q ≥  (at least two fuzzy preference relations can be obtained 

separated from a hesitant fuzzy preference relation), we have 
( ( 1) 1) 2 ( 1) 1q n n n n n n− + + > − + + . The advantage of the regression method is 

that it is a convenient method to find out a fuzzy preference relation from a hesitant 
fuzzy preference relation with the highest consistency level quickly. Utilizing the 
Matlab software for computation, we find that the proposed method can save much 
more time and is much more effective than the separation method, and the bigger 
q , the more convenient is the regression method.  

3.4.2   Regression Method of Hesitant Fuzzy Preference Relations  
Based on Weak Consistency 

For the decision making problems in practical applications, the additive transitivity 
is not necessary due to the complicated environment and the cognitive diversity of 
humans. But, the weak consistency is essential because a contradictory hesitant 
fuzzy preference relation doesn't make sense. Therefore, the weak consistency is 
reasonable if the requirement for consistency is not strict. On the basis of the weak 
consistency (3.39), we develop a regression method of hesitant fuzzy preference 
relations which results in fuzzy preference relations satisfying the weak 
consistency. 

In order to propose this regression method, in what follows, we first give the 
definition of a hesitant preference relation: 
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Definition 3.14 (Zhu and Xu 2013a).  Assume a hesitant fuzzy preference relation, 

( ) { }
ij ij

ij ijn n h
n n

H h
γ

γ
× ∈ ×

 = = 
 
 , its hesitant preference degree is defined as:  

 

 

1,  0.5< 1
, , 1, 2, ...,

0,  0 0.5ij ij

ij

ij ij ij
h

ij

p i j n
γ

γ
δ δ

γ∈

 ≤  = = =  ≤ <  
       (3.53) 

 
where ijδ  is called a hesitant preference element, then ( )ij n nP p ×=  is called a 

hesitant preference relation. 
According to graph theory (Bondy and Murtyc 1976), the relationship included 

in the hesitant preference relation can be reflected by a directed graph, which can be 
called a “hesitant fuzzy preference graph”. In such a graph, each node stands for an 

alternative, and each directed edge stands for a preference relation. If 1ijp = , then 

there is a directed edge from a node iA  to a node jA , which represents that an 

alternative iA  is superior to an alternative jA .  

Example 3.6 (Zhu and Xu 2013a).  Consider an alternative set 

1 2 3 4{ , , , }A A A A A= , and assume two hesitant fuzzy preference relations: 

 

2

{0.5} {0.6} {0.6,0.7} {0.6}

{0.4} {0.5} {0.8} {0.4}

{0.3,0.4} {0.2} {0.5} {0.2}

{0.4} {0.6} {0.8} {0.5}

H

 
 
 =
 
 
 

 

 

3

{0.5} {0.4,0.6} {0.6} {0.4,0.6}

{0.4,0.6} {0.5} {0.8} {0.4}

{0.4} {0.2} {0.5} {0.2,0.3}

{0.4,0.6} {0.6} {0.7,0.8} {0.5}

H

 
 
 =
 
 
 

 

 
then according to Definition 3.14, we get 
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2

{0} {1} {1} {1}

{0} {0} {1} {0}

{0} {0} {0} {0}

{0} {1} {1} {0}

HP

 
 
 =
 
 
 

, 
3

{0} {1,0} {1} {1,0}

{0,1} {0} {1} {0}

{0} {0} {0} {0}

{0,1} {1} {1} {0}

HP

 
 
 =
 
 
 

 

 

The hesitant fuzzy preference graphs of 
2HP  and 

3HP  are shown in Graphs 3.1 

and 3.2 (Zhu and Xu 2013a), respectively. 
 

  
Graph 3.1. Hesitant fuzzy preference graph 

2HP    

 

 

Graph 3.2. Hesitant fuzzy preference graph 
3HP  

 
If there is no circular triad in the hesitant fuzzy preference graph, it means that a 

circular relation of alternatives does not exist, so the corresponding hesitant fuzzy 
preference relation satisfies the weak consistency, such as Graph 3.1. However, in 

Graph 3.2, we can see that the alternatives 1A  and 4A  are connected by two 

4A

1A 2A

3A

4A

1A 2A

3A
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opposite directed edges. In such a case, we can get a circular triad of alternatives as 

1 4 2 1A A A A→ → →  in Graph 3.2, thus the corresponding hesitant fuzzy 

preference relation, 3H , does not satisfy the weak consistency. Therefore, a 

circular triad can be used to test the weak consistency of a hesitant fuzzy preference 
relation.  

For a hesitant preference relation, a circular triad can be specified as follows: 
 

Definition 3.15 (Zhu and Xu 2013a). Let ( )ij n nP p ×=  be the hesitant preference 

relation of a hesitant fuzzy preference relation ( )ij n nH h ×= , where ijp  is given 

by Eq.(3.53), then  
  

{ } { }
, ,ijk ijk ij ij jk jk ki ki

ijk ijk ij jk ki
c C p p p

C c
δ δ δ

δ δ δ
∈ ∈ ∈ ∈

= = + + 
 

 
( , , {1,2, , }, )i j k n i j k∈ ≠ ≠   (3.54) 

                   
is called a hesitant circular triad power, and ijkc  is called a hesitant circular triad 

power element.  
 

Theorem 3.5 (Zhu and Xu 2013a).  For a hesitant fuzzy preference relation, 

( )ij n nH h ×= , we can get its hesitant preference relation ( )ij n nP p ×= , and 

hesitant circular triad power, { }
ijk ijk

ijk ijk
c C

C c
∈

=  . If and only if at least a 3ijkc =  

exists, then H  does not satisfy the weak consistency. 
 

Proof. If at least a 3ijkc =  exists, then at least there exists one circular triad 

indicating a relation of alternatives as i j k iA A A A   . According to the 

definition of the weak consistency (3.39), H  does not satisfy the weak 
consistency; If H  does not satisfy the weak consistency, then at least there exists a 

circular triad of alternatives as i j k iA A A A   ,
 
according to Definition 3.15, 

we can obtain at least a 3ijkc = , which complete the proof. 

Jiang and Fan (2008) gave a definition of a reachability matrix used to test the 
weak consistency of fuzzy preference relations. Motivated by this idea, we now 
develop another method to test the weak consistency of hesitant fuzzy preference 
relations. Based on the fuzzy preference relation, we define its k th power as 
follows:  
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Definition 3.16 (Zhu and Xu 2013a).  Let ( )ij n nP p ×=  be the hesitant 

preference relation of a hesitant fuzzy preference relation ( )ij n nH h ×= , then we 

call ( )kP =
 ( )( )k

ij n n
p

×
 the k th power of P , where the ( , )i j  entry, denoted 

by ( )k
ijp , is the number of different directed edges of the length k  from the node 

iA  to the node jA . 

Furthermore, we define the hesitant reachability matrix as follows: 
 

Definition 3.17 (Zhu and Xu 2013a).  Let ( )ij n nP p ×=  be the hesitant 

preference relation of a hesitant fuzzy preference relation ( )ij n nH h ×= , 

( )(3) (3)
ij n n

P p
×

=  the third power of P , then we call the matrix (3)P  the 

hesitant reachability matrix.  
 

Theorem 3.6 (Zhu and Xu 2013a). For a hesitant fuzzy preference relation, 

( )ij n nH h ×= , if all diagonal elements are zero in its hesitant reachability matrix 

( )(3) (3)
ij n n

P p
×

= , then H  satisfies the weak consistency.  

 
Proof. For the hesitant fuzzy preference relation ( )ij n nH h ×= , if all diagonal 

elements are zero in its hesitant reachability matrix ( )(3) (3)
ij n n

P p
×

= , i.e., 

(3) 0iip = ,
 

1, 2,...,i n= , it means that there is no circular triad of alternatives in 

H , then H  satisfies the weak consistency, which completes the proof.  
According to Definition 3.17, and the two hesitant fuzzy preference relations 

2H  and 3H  in Example 3.6, we can get two hesitant reachability matrices as 

follows: 

2

(3)

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0

HP

 
 
 =
 
 
 

,  
3

(3)

1 0 1 0

0 1 1 0

0 0 0 0

0 0 2 1

HP

 
 
 =
 
 
 

 

By Theorem 3.6, 2H  has the weak consistency, but 3H  does not.  

Based on the discussion above, Zhu and Xu (2013a) developed an algorithm to 
obtain the reduced fuzzy preference relations satisfying the weak consistency 
transformed from a hesitant fuzzy preference relation:  
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(Algorithm 3.5) 

Given a hesitant fuzzy preference relation, ( )( ) ( )q q
ij n n

H h
×

=
 
( 0q = ; ( )qH  is 

the q th power of H  indicating the number of being modified). Assume that 
( )qH  can be modified into a preference relation satisfying the weak consistency.  

 
Step 1.  According to Definitions 3.14 and 3.17, we can get its hesitant preference 

relation ( )ij n nP p ×=  and the hesitant reachability matrix (3)P = ( )(3)
ij n n

p
×

, 

respectively.  
 
Step 2.  According to Theorem 3.6, if ( )qH  has the weak consistency, turn to 

Step 5; If ( )qH  does not satisfy the weak consistency, then turn to Step 3. 

 
Step 3.  Refer to the hesitant preference relation ( )ij n nP p ×= , then we locate a 

pair of hesitant preference degrees ( ),ij jip p , satisfying {0,1}ijp =  and 

{1,0}jip = .  

According to Eq.(3.54), we have { }
ijk ijk

ijk ijk
c C

C c
∈

=  , and find 3ijkc = .
 
Then, 

we remove the pair of hesitant preference elements ( ),ij jiδ δ  satisfying 

1ij jiδ δ+ = , and remove their corresponding preference degrees in the pair of 

HFEs ( , )ij jih h
 
in H .  

 
Step 4.  Let 1q q= + , and construct a modified hesitant fuzzy preference 

relation as ( 1)qH + , then turn to Step 1.  

 
Step 5.  Divide ( )qH  into all possible reduced fuzzy preference relations. 

 
Step 6.  End. 

 
Example 3.7 (Zhu and Xu 2013a).  Here we use 3H  in Example 3.6, and let 

3H  be ( )
3

qH  ( 0q = ). Since ( )
3

qH  does not satisfy the weak consistency, we 

can directly come to Step 3 of Algorithm 3.5.  
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Step 3. Locate 14 41( , )p p , which satisfies 14 {0,1}p =  and 41 {1,0}p = .
 

According to Eq.(3.54), we have 142 {1,2,3}C = , and 143 {0,2}C = , where 

142 3c =  exists. Thus, we remove the pair of hesitant preference elements 

14 {0}δ =  and 41 {1}δ = , and remove their corresponding preference degrees 

14 0.4γ =  and 41 0.6γ =  in the pair of hesitant preference elements
 14 41( , )h h

 
in H .   
 
Step 4.  Let 1q q= + , then we construct a modified hesitant fuzzy preference 

relation (1)
3H  as:  

(1)
3

{0.5} {0.4,0.6} {0.6} {0.4}

{0.4,0.6} {0.5} {0.8} {0.4}

{0.4} {0.2} {0.5} {0.2,0.3}

{0.6} {0.6} {0.7,0.8} {0.5}

H

 
 
 =
 
 
 

 

 
Then turn to Step 1. 

 
Step 1.  According to Definitions 3.14 and 3.17, and the modified hesitant fuzzy 

preference relation (1)
3H , we can get its hesitant preference relation (1)

3H
P  and the 

hesitant reachability matrix (1)
3

(3)

H
P  respectively: 

 

(1)
3

{0} {1,0} {1} {0}

{0,1} {0} {1} {0}

{0} {0} {0} {0}

{1} {1} {1} {0}

H
P

 
 
 =
 
 
 

, (1)
3

(3)

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1 0

H
P

 
 
 =
 
 
 

 

 
Step 2.  According to Theorem 3.6, (1)

3H  satisfies the weak consistency, turn to 

Step 5. 
 

Step 5.  Divide (1)
3H  into the following possible reduced fuzzy preference 

relations satisfying the weak consistency: 
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(1)
3

1

0.5 0.4 0.6 0.4

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.2

0.6 0.6 0.8 0.5

HU

 
 
 =
 
 
 

,  
(1)
3

2

0.5 0.4 0.6 0.4

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.3

0.6 0.6 0.7 0.5

HU

 
 
 =
 
 
 

 

 

(1)
3

3

0.5 0.6 0.6 0.4

0.4 0.5 0.8 0.4

0.4 0.2 0.5 0.2

0.6 0.6 0.8 0.5

HU

 
 
 =
 
 
 

,  
(1)
3

4

0.5 0.6 0.6 0.4

0.4 0.5 0.8 0.4

0.4 0.2 0.5 0.3

0.6 0.6 0.7 0.5

HU

 
 
 =
 
 
 

 

 
Step 6. End. 

 
In practical applications, Algorithms 3.4 and 3.5 can be combined to obtain a 

reduced fuzzy preference relation from a hesitant fuzzy preference relation not only 
satisfying the weak consistency but also having the highest confidence level. That 
is, to replace Step 5 in Algorithm 3.5 by Algorithm 2.4.  

For example, we replace Step 5 in Example 3.7 by Algorithm 3.4, and then 

obtain a reduced fuzzy preference relation 2H  with the highest consistency level 

95.56%  as: 
 

2

0.5 0.4 0.6 0.4

0.6 0.5 0.8 0.4

0.4 0.2 0.5 0.2

0.6 0.6 0.8 0.5

H

 
 
 =
 
 
 



 
 

Similar to Example 3.6, we calculate the consistency levels of 
(1)
3  (H

iU i =  

1, 2,3, 4)  according to the method introduced by Herrera-Viedma et al. (2007). 

Consequently, 
 

(1)
3

1

95.93%
H

U
cl = , (1)

3
2

94.63%
H

U
cl = , (1)

3
3

92.96%
H

U
cl =  

(1)
3

4

90.93%
H

U
cl =  

 

Obviously, the same result can be obtained, that is 
(1)
3

2 1
HH U= . 
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3.5   Deriving a Ranking from Hesitant Fuzzy Preference 
Relations under Group Decision Making 

3.5   Deriving a R anking from Hes itant F uzzy Preference Relations   

In group decision making with hesitant fuzzy preference relations, the decision 
group can provide all possible preferences presented by HFEs, so HFEs often have 
different numbers of elements. To develop the consistency measures and the 
priority methods of hesitant fuzzy preference relations, a normalization process 
becomes necessary to make HFEs have the same number of elements. Two opposite 
principles can be considered for the normalization (Zhu et al. 2013b): (1) The 
α -normalization, by removing elements of HFEs; 2) The β -normalization, by 

adding elements to HFEs. If we aim to select an optimal preference from all 
possible ones, the α -normalization is reasonable; If we want to consider all 
possible preferences provided by the decision group, we should use the 
β -normalization. Consequently, on the basis of the two different normalization 

principles, we will some different priority methods for hesitant fuzzy preference 
relations. 

3.5.1   Deriving Priorities from Hesitant Fuzzy Preference 
Relations with α -Normalization 

Based on the α -normalization, Zhu et al. (2013b) developed a modelling method 
to derive priorities from hesitant fuzzy preference relations in group decision 
making. In the hesitant fuzzy environments, we assume that a group of DMs are 
hesitant about several possible values for the preference degrees over paired 
comparisons of alternatives, so as to construct a hesitant fuzzy preference relation.  

Suppose a set of alternatives 1 2{ , , , }nA A A A=  , and a constructed hesitant 

fuzzy preference relation ( )ij n n
H h

×
= , where { }| 1,2, ,

ij

t
ij ij hh h t l= =  . 

Since each element in ijh  is a possible preference degree of the alternative iA  

over jA , then by Eq.(3.12), the consistent preferences can be obtained by  

 
( )(1)    , , 1,2, ,hij
li

ij ij

i j

w
or or for all i j n

w w

σσγ γ= =
+

         (3.55) 

 

where 1 2( , , , )nw w w w Τ=   is the priority vector of H , with 
1

1
n

i
i

w
=

= , and 

0iw > , 1,2, ,i n=  ; ( )t
ij
σγ ( )1, ,

ijht l=   is the t th largest element in ijh .  
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Let 
( )(1)( )   hij
l

ij ij ijor or
σσϕ γ γ γ=  , then by Eq.(3.55), we have   

 

( ) ( )( ( ))i
ij i i j ij

i j

w
w w w

w w
ϕ γ ϕ γ= ⇔ = +

+
 

(1 ( )) ( ) ,  , 1, 2, ,ij i ij jw w i j nϕ γ ϕ γ⇔ − = = 
        

(3.56) 

 

Let ( ) ( )( )(1)1 ( ) 1   1  hij
l

ij ij ijor or
σσϕ γ γ γ− = − − , then we have 1 ( ) ( )ij jiϕ γ ϕ γ− = . 

Thus, Eq.(3.56) can be rewritten as  
 

( ) ( ) ( ) ,i
ij ji i ij j

i j

w
w w

w w
ϕ γ ϕ γ ϕ γ= ⇔ =

+
 

, 1,2, ,i j n=     (3.57) 

 

Let ( ) ( )ij ji i ij jw wε ϕ γ ϕ γ= − , then, in order to obtain consistent preferences 

as much as possible, we minimize ijε  for all i  and j . Thus, the priorities of 

alternatives derived from H  can be obtained by solving the following 
optimization problem (Zhu et al. 2013b): 

 
(M-3.1) 

1

min  ( ) ( ) , , 1, 2, , ,

. . 1,  0,  1, 2, , .

ij ji i ij j

n

i i
i

w w i j n i j

s t w w i n

ε ϕ γ ϕ γ

=

= − = ≠

= > =




        

(3.58) 

 

which is called a hesitant multi-objective programming model. 
The solution to the hesitant multi-objective programming model is found by 

solving the following optimization problem (Zhu et al. 2013b): 
 

(M-3.2) 

1 1,

1

min  ( )

( ) ( ) =0, , 1, 2, , , ,

. . 1,  0,  1,2, , ,

, 0,  , 1, 2, , , .

n n

ij ij ij ij
i j i j

ji i ij j ij ij ij ij

n

i i
i

ij ij

f s d t d

w w s d t d i j n i j

s t w w i n

d d i j n i j

ϕ γ ϕ γ

+ −

= = ≠

+ −

=

+ −

= +

 − − + = ≠

 = > =

 ≥ = ≠

 








    

(3.59) 
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where ijd +  and ijd −  are the positive and negative deviations from the target of the 

goal ijε , respectively; ijs  and ijt  are the weights corresponding to ijd +  and 

ijd − , respectively. We call Eq.(3.59) a hesitant goal programming model.  

Without loss of generality, we consider that all the goal functions ijε ( ,i j =  

1, 2 , )n  are fair, then we can set 1ij ijs t= = ( , 1,2 , )i j n=  . Consequently, 

Eq.(3.59) can be rewritten as follows (Zhu et al. 2013b): 
 

(M-3.3) 

  

1 1,

1

min  ( )

( ) ( ) =0, , 1,2, , , ,

. . 1,  0,  1,2, , ,

, 0,  , 1, 2, , , .

n n

ij ij
i j i j

ji i ij j ij ij

n

i i
i

ij ij

f d d

w w d d i j n i j

s t w w i n

d d i j n i j

ϕ γ ϕ γ

+ −

= = ≠

+ −

=

+ −

= +

 − − + = ≠

 = > =

 ≥ = ≠

 









     

(3.60) 
 

Solving this model can be considered as a selection process based on the 
α -normalization, and it is to select the optimal preferences from all possible ones 
for each paired comparison of alternatives until we obtain the deterministic 
preferences, which results in a fuzzy preference relation consisting of the 
deterministic preferences.  

We now give a numerical example to illustrate the hesitant goal programming 
model. 

 
Example 3.8 (Zhu et al. 2013b).  Assume that a group of DMs provide hesitant 

preferences over paired comparisons of three alternatives ( 1,2,3)iA i = , so as to 

construct a hesitant fuzzy preference relation as follows: 
 

1

{0.5} {0.2, 0.3} {0.6, 0.7}

{0.8, 0.7} {0.5} {0.4}

{0.4, 0.3} {0.6} {0.5}

H

 
 =  
 
 

 

 
According to the model (M-3.3), we can build this optimization problem: 
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3 3

1 1,

1 2 12 12

1 3 13 13

2 3 23 23

1

min  ( )

(0.8  0.7) (0.2  0.3) =0,

(0.4  0.3) (0.6  0.7) =0,

. . 0.6 0.4 =0,

 1,  0,  1, 2,3,

 , 0,  , 1,2,3, .

ij ij
i j i j

n

i i
i

ij ij

f d d

or w or w d d

or w or w d d

s t w w d d

w w i

d d i j i j

+ −

= = ≠

+ −

+ −

+ −

=

+ −

= +


− − +

− − +

− − +

= > =

≥ = ≠

 














 

 
The solution of this model can be obtained by a programmed cyclic structure in 

the Matlab Optimization Tool. The results are listed as follows: 
 

0.2488f = , 1 0.1463w = , 2 0.3415w = , 3 0.5122w =  

12 12 0d d+ −= = , 13 0d + = , 13 0.2488d − = , 23 23 0d d+ −= =  

 
Thus, the priority vector of the alternatives is 

1H
w T(0.1463,0.3415,0.5122)= . 

Thus, the alternative 3A  is the best. In addition, according to the resolution 

process of this model, we also can get all final values of membership degrees of 

ijh ( ,i j =  1, 2,3, )i j≠  which result into a fuzzy preference relation as follows: 

 

1

0.5 0.3 0.6

0.7 0.5 0.4

0.4 0.6 0.5

H

 
 ′ =  
 
 

 

 
which is called a “reduced hesitant fuzzy preference relation” (Zhu and Xu 2013a).  

Based on the principle of α -normalization, hesitant fuzzy preference relations 
can reduce to fuzzy preference relations by removing some membership degrees. So 
we utilize the consistency measure of fuzzy preference relations to develop this 
hesitant goal programming model. It’s convenient and effective to be operated in 
practice. However, according to the β -normalization, we should add some 

elements to HFEs. 
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3.5.2   Deriving Priorities from Hesitant Fuzzy Preference 
Relations with β -Normalization 

The β -normalization aims to add elements to HFEs so as to make them have the 

same number of preferences in hesitant fuzzy preference relations. In order to 
derive priorities from hesitant fuzzy preference relations with the β - 

normalization, we first develop some consistency measures of hesitant fuzzy 
preference relations to ensure their consistency, then use the hesitant aggregation 
operators to aggregate preferences in hesitant fuzzy preference relations to obtain 
the priorities of alternatives.  

To add some elements to HFEs, we use an optimized parameter (0 1)ς ς≤ ≤  
originally introduced by Zhu et al. (2013b):  

 

Definition 3.18 (Zhu et al. 2013b).  Assume a HFE, { }| 1, ,q
hh q lγ= =  , let 

γ +  and γ −  be the maximum and minimum membership degrees in h  

respectively, and  (0 1)ς ς≤ ≤  an optimized parameter, then we call 

( )1h ςγ ς γ+ −= ⊕ −  an added membership degree. 

 
The max, min and the averaged added membership degrees correspond with *γ , 

*γ , and aγ  respectively, where *γ γ += , *γ γ −= , and ( )0.5aγ γ γ+ −= ⊕ . It's 

clear that *γ  and *γ  correspond with the optimism and pessimism rules 

respectively to add membership degrees to HFEs introduced by Xu and Xia 
(2011b). The optimized parameter is provided by the group of DMs, and it is used to 
reflect the DMs’ risk preferences: the optimists anticipate desirable outcomes and 
may add the maximum membership degree, while the pessimists expect 
unfavorable outcomes and may add the minimum membership degree.  

Using ς , we can add some elements to a hesitant fuzzy preference relation, and 

get a normalized hesitant fuzzy preference relation defined as follows: 
 

Definition 3.19 (Zhu et al. 2013b).  Assume a hesitant fuzzy preference relation, 

( )ij n n
H h

×
= , and an optimized parameter (0 1)ς ς≤ ≤ , where ς  is used to 

add some elements to ( )ijh i j< , and 1 ς−  is used to add some elements in 

( )jih i j<  so as to obtain a hesitant fuzzy preference relation, ( )N N
ij n n

H h
×

=  

satisfying the following conditions: 
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(1) 
 

{ }max | , 1, 2, , ,  , 1,2, , ,N N
ij ijh h

l l i j n i j n i j= = = ≠  . 

 
(2) ( ) ( )( ) ( ) 1,  0.5N q N q

ij ji iih h hσ σ+ = = ; , 1, 2, ,i j n=  . 

 

(3) ( ) ( ) ( ) ( )( ) ( 1) ( 1) ( )
,  ,  

q q q qN N N N
ij ij ji jih h h h i j

σ σ σ σ+ +
≤ ≤ < . 

 

where ( ) ( )qN
ijh

σ
 is the qth element in N

ijh . Then we call ( )N N
ij n n

H h
×

=  a 

normalized hesitant fuzzy preference relation with the optimized parameter ς , and 
N
ijh  is a normalized hesitant fuzzy element. 

 
Example 3.9 (Zhu et al. 2013b).  For a given hesitant fuzzy preference relation 

2H , according to Definition 3.19, and let 1ς = , we can get the normalized 

hesitant fuzzy preference relation 2
NH  as follows: 

 

2

{0.5} {0.3,0.2} {0.6}

{0.8, 0.7} {0.5} {0.6, 0.7, 0.8}

{0.4} {0.2, 0.3, 0.4} {0.5}

H

 
 =  
 
 

 

 

2

{0.5} {0.2, 0.3,0.3} {0.6, 0.6,0.6}

{0.8, 0.7, 0.7} {0.5} {0.6, 0.7, 0.8}

{0.4, 0.4, 0.4} {0.4, 0.3, 0.2} {0.5}

NH

 
 =  
 
 

 

 
Based on the normalized hesitant fuzzy preference relations, we now give the 

definition of consistent hesitant fuzzy preference relation: 
 

Definition 3.20 (Zhu et al. 2013b).  Given a hesitant fuzzy preference relation 

( )ij n nH h ×= , and an optimized parameter (0 1)ς ς≤ ≤ , we can get its 

normalized hesitant fuzzy preference relation ( )N N
ij n n

H h
×

= , if 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )
,

q q q q q qN N N N N N
ik kj ji ki jk ijh h h h h h

σ σ σ σ σ σ
=

 
, , 1, 2, , ,i j k n i j k= ≠ ≠

     
(3.61) 
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where ( ) ( )qN
ijh

σ
 is the q th element in N

ijh , then H  is called a consistent 

hesitant fuzzy preference relation with ς  satisfying complete consistency.  

Furthermore, by Eq.(3.61), we have  
 

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( )

( )

( ) ( ) ( ) ( )
,

1 1

q qN N
q ik kjN

ij q q q qN N N N
ik kj ik kj

h h
h

h h h h

σ σ
σ

σ σ σ σ=
+ − −

 

 

, , 1,2, , ,i j k n i j k= ≠ ≠      
 
(3.62) 

 
In fact, according Eq.(3.61), we have 

 

 
( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )q q q q q qN N N N N N

ik kj ji ki jk ijh h h h h h
σ σ σ σ σ σ

=
 

 

( )( ) ( )( ) ( )( )( )( ) ( ) ( ) ( )( ) ( )( ) ( ) 1 1 1
q q q qN q N q N N N N

ik kj ij ik kj ijh h h h h h
σ σ σ σσ σ⇔ − = − −  

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( )( )( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1

q q q q q q q qN N N N N N N N
ik kj ik kj ij ik kj ijh h h h h h h h

σ σ σ σ σ σ σ σ
⇔ − = − −

  
 

( ) ( ) ( )( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 )

q q q q q q qN N N N N N N
ik kj ik kj ik kj ijh h h h h h h

σ σ σ σ σ σ σ
⇔ = − − +

 
 

  

( ) ( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( )

( )

( ) ( ) ( ) ( )
1 1

q qN N
q ik kjN

ij q q q qN N N N
ik kj ik kj

h h
h

h h h h

σ σ
σ

σ σ σ σ⇔ =
+ − −

 

  

, , 1,2, , ,for all i j k n i j k= ≠ ≠  

which show that Eq.(3.62) holds.  
 

Theorem 3.7 (Zhu et al. 2013b).  Given a hesitant fuzzy preference relation
 ( )ij n n

H h
×

= , and  (0 1)ς ς≤ ≤ , we can get its normalized hesitant fuzzy 

preference relation ( )N N
ij n n

H h
×

= , for all , , 1,2, , ,i j k n i j k= ≠ ≠ , let 
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( )
( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )

( ) 1

( ) ( ) ( ) ( )

1 1

1 1

n q qN N
n

ik kj
q kN

ij n nq q q qN N N N
n n

ik kj ik kj
k k

h h

h

h h h h

σ σ

σ

σ σ σ σ

=

= =

=
+ − −

∏

∏ ∏
  

(3.63) 
 

then ( )N N
ij n n

H h
×

=  is a consistent hesitant fuzzy preference relation with ς .  

 
Proof.  For , , 1,2, , ,i j k n i j k= ≠ ≠ , let  

 

( )
( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )

( ) 1

( ) ( ) ( ) ( )

1 1

1 1

n q qN N
n

it tk
q tN

ik n nq q q qN N N N
n n

it tk it tk
t t

h h

h

h h h h

σ σ

σ

σ σ σ σ

=

= =

=
+ − −

∏

∏ ∏  

                                                               (3.64) 
 

( )
( ) ( )( )

( ) ( )( ) ( )( ) ( )( )

( ) ( )

( ) 1

( ) ( ) ( ) ( )

1 1

1 1

n q qN N
n

kt tj
q tN

kj n nq q q qN N N N
n n

kt tj kt tj
t t

h h

h

h h h h

σ σ

σ

σ σ σ σ

=

= =

=
+ − −

∏

∏ ∏      

(3.65) 
 

( ) ( )( ) ( )( ) ( )( )( ) ( ) ( ) ( )

1 1

1 1
n nq q q qN N N N

n n
ik it tk it tk

t t

M h h h h
σ σ σ σ

= =

= + − −∏ ∏
 

(3.66) 
 

( ) ( )( ) ( )( ) ( )( )( ) ( ) ( ) ( )

1 1

1 1
n nq q q qN N N N

n n
kj kt tj kt tj

t t

N h h h h
σ σ σ σ

= =

= + − −∏ ∏
 

(3.67) 
then 

( ) ( )
( ) ( ) ( )( ) ( )( )

( ) ( )

( ) ( ) ( ) ( )
1 1

q qN N
ik kj

q q q qN N N N
ik kj ik kj

h h

h h h h

σ σ

σ σ σ σ
+ − −  
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( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( )

1 1

1 1

n q q q qN N N N
n

it tk kt tj ik kj
t

n q q q qN N N N
n

it tk kt tj ik kj
t

n nq q q qN N N N
n n

it tk ik kt tj kj
t t

h h h h M N

h h h h M N

h h M h h N

σ σ σ σ

σ σ σ σ

σ σ σ σ

=

=

= =

=
 

+ 
 
    − −        

∏

∏

∏ ∏

 

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( )

1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 1

1 1 1 1

n q q q qN N N N
n

it tk kt tj
t

n nq q q q q q q qN N N N N N N N
n n

it tk kt tj it tk kt tj
t t

h h h h

h h h h h h h h

σ σ σ σ

σ σ σ σ σ σ σ σ

=

= =

=
+ − − − −

∏

∏ ∏
 

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( )
( ) ( )

( )1

( ) ( ) ( ) ( )

1 1

1 1

n q qN N
n

it tj
qt N

ijn nq q q qN N N N
n n

it tj it tj
t t

h h

h

h h h h

σ σ

σ

σ σ σ σ

=

= =

= =
+ − −

∏

∏ ∏
    

(3.68) 
 
Moreover,  
 

( ) ( )

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )

1

( ) ( ) ( ) ( )

( ) ( ) 1 1

( ) ( )

1

( ) ( ) ( ) ( )

1 1

1 1

1 1

n q qN N
n

it tj
t

n nq q q qN N N N
n n

it tj it tj
q q t tN N

ij ji
n q qN N

n
jt ti

t

n nq q q qN N N N
n n

jt ti jt ti
t t

h h

h h h h

h h

h h

h h h h

σ σ

σ σ σ σ

σ σ

σ σ

σ σ σ σ

=

= =

=

= =

 
 
 
 
 + − −
 + =  
 
 
+ 
 + − − 
 

∏

∏ ∏

∏

∏ ∏
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( ) ( )( )
( ) ( )( ) ( )( ) ( )( )

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

1

( ) ( ) ( ) ( )

1 1

( ) ( )

1

( ) ( ) ( ) ( )

1 1

1 1

1 1

1 1

n q qN N
n

it tj
t

n nq q q qN N N N
n n

it tj it tj
t t

n q qN N
n

it tj
t

n nq q q qN N N N
n n

it tj tj it
t t

h h

h h h h

h h

h h h h

σ σ

σ σ σ σ

ρ ρ

σ σ σ σ

=

= =

=

= =

 
 
 
 
 + − −
 =  
 − − 

+ 
 − − + 
 

∏

∏ ∏

∏

∏ ∏
     

1=                                                                  (3.69) 
 

So we complete the proof of Theorem 3.7.  
 

Theorem 3.8 (Zhu et al. 2013b).  For a consistent ( )ij n nH h ×=  with ς , let 

( )c c
ij n n

H h
×

= , then CH  is also a consistent hesitant fuzzy preference relation 

with 1 ς− .  

 

Proof.  Since ( )ij n nH h ×=
 
is consistent with ς , then it means that  

 

( ) ( )
(1 ),

qN
ij ij ijh

σ
γ ς γ ς+ −= + −  i j<                  (3.70) 

 

( ) ( )
(1 ) ,

qN
ji ji jih

σ
γ ς γ ς+ −= − +  j i<                  (3.71) 

 

and H  satisfies Eq.(3.61), where ijγ +  and ijγ −  are the maximum and minimum 

membership degrees in ijγ  respectively.  

According to the basic operations on HFEs (see Subsection 1.1.2)  we have  
 

( )( ) ( )( )
(1 )

cq cN
ij ij ijh

σ
γ ς γ ς+ −= + − , for all , 1,2,i j n=           (3.72) 

 

since 1ij jiγ γ+ −= − , and 1ij jiγ γ− += − , we can get  
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( )( ) ( ) ( )( )
(1 ) (1 )(1 ) 1

cq c cN
ij ji ji ji ji jih

σ
γ ς γ ς ς γ ς ς γ γ ς− + − + += − + − − = − + − − +

1 1ji ji jiς γ ς ς γ γ ς− + += − + − + + −
 

(1 )ji jiγ ς γ ς+ −= − +                                              (3.73) 

 
Similarly, we also can get  

 

              
( )( )( )

(1 )
cqN

ji ji jih
σ

γ ς γ ς+ −= + −
     

              (3.74) 

 

Since ( )( ) ( )( ) ( )cq qN N
ij jih h

σ σ
= , ( )( ) ( )( ) ( )cq qN N

ji ijh h
σ σ

= , and H
 
is a 

consistent HFPR with ς , then ( )C c
ij n n

H h
×

=
 

is a consistent hesitant fuzzy 

preference relation with 1 ς− . 

This completes the proof of Theorem 3.8.  
 

Theorem 3.9 (Zhu et al. 2013b).  Let ( )ij n n
H h

×
=  be a consistent hesitant 

fuzzy preference relation with ς , if we remove the i th row and the i th column 

for 1,2, ,i n=  , then the remaining hesitant fuzzy preference relation 

( )
( 1) ( 1)ij n n

H h
− × −

′ ′=  is also a consistent hesitant fuzzy preference relation with ς  . 

 
Proof. Immediately from the definition of a consistent hesitant fuzzy preference 
relation.  

 
In practical applications, the group of DMs rarely reaches the complete 

consistency because of some inherent differences among the DMs. Thus, we now 
consider the acceptable consistency of hesitant fuzzy preference relations.  

To define the acceptable consistency, Saaty (1980) developed a consistency ratio 
(CR) to measure the consistency level of multiplicative preference relations. Then, 
Crawford and Williams (1985) proposed a geometric consistency index based on a 
row geometric mean prioritization method. Aguarón and Moreno-Jiménez (2003) 
further studied the geometric consistency index. But very few researches have 
focused on the studies of consistency thresholds for fuzzy preference relations.  

Dong et al. (2008) used the distance measures to define a consistency index and 
built the consistency thresholds to identify whether a linguistic preference relation 
is of acceptable consistency. Motivated by this idea, Zhu et al. (2013b) defined 
some distance measures of hesitant fuzzy preference relations to identify the 
consistency levels of hesitant fuzzy preference relations:  
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Suppose two normalized hesitant fuzzy elements 1
Nh  and 2

Nh , satisfying 

1 2
N Nh h

l l= . Let 
1 2
N Nh h h

l l l= = , then the normalized hesitant distance measures can 

be presented as follows: 
 

(1) The normalized hesitant normalized Hamming distance: 
 

( )
( ) ( )

( ) ( ){ }( ) ( )

1 1 2 2

( ) ( )

Hamming 1 2 1 2
,

1
,

q qN N N N

q qN N N N
s

h h h hh

d h h S h h
l σ σ

σ σ

∈ ∈

  
  = −

    


  

(3.75) 
 

where sS  is a function that indicates a summation of all values in a set, ( ) ( )

1

qNh
σ

 

and ( ) ( )

2

qNh
σ

 are the q th largest element in 1
Nh  and 2

Nh  respectively. 

 
(2) The normalized hesitant normalized Euclidean distance: 

 

( )
( ) ( )

( ) ( )( )( ) ( )

1 1 2 2

1

2
2( ) ( )

Euclidean 1 2 1 2
,

1
,

q qN N N N

q qN N N N
s

h h h hh

d h h S h h
l σ σ

σ σ

∈ ∈

       = −        


  
(3.76) 

 
According to the distance measures above and similar to Eq.(3.20), Zhu et al. 
(2013b) gave the following definition: 

 
Definition 3.21 (Zhu et al. 2013b).  Assume two hesitant fuzzy preference 

relations 1H  and 2H  and an optimized parameter ς ,
 
we get their normalized 

hesitant fuzzy preference relations
 

( )1 (1)
N N

ij n n
H h

×
=  and ( )2 (2)

N N
ij n n

H h
×

=  

satisfying 
(1) (2)

N N
ij ijh h

l l=
 
( , 1, , , )i j n i j= ≠ . Then  

 

( ) ( )( )2

1 2 (1) (2)
1 1

2
, ,

( 1)

n n
N N
ij ij

j i i

d H H d h h
n n = + =

=
− 

            

(3.77) 

 
is called the distance of hesitant fuzzy preference relations with ς , where the 

function d  indicates a normalized hesitant distance measure.  
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Theorem 3.10 (Zhu et al. 2013b).  The distance between two hesitant fuzzy 

preference relations 1H  and 2H  denoted by ( )1 2,d H H  satisfying the 

following properties: 
 

(1) ( )1 20 , 1d H H≤ ≤ . 

(2) ( )1 2, 0d H H =  if and only if 1 2H H= . 

(3) ( ) ( )1 2 2 1, ,d H H d H H= . 
 

Proof. Immediately from the properties of hesitant distance measures (Xu and Xia 
2011a).  

 

Assume a hesitant fuzzy preference relation ( )ij n nH h ×=  and ς , according to 

Theorem 3.7, we can get its consistent hesitant fuzzy preference relation 

( )ij n nH h ×=  with ς . To make H  approximate H  as much as possible, we set 

( ),d H H  as the consistency index (CI) with ς  of the hesitant fuzzy preference 

relation H  as follows:  

   ( )( ) ,CI H d H H=
                      

 (3.78) 
 

Property 3.1 (Zhu et al. 2013b). 0 ( ) 1CI H≤ ≤ . 
 

Clearly, the smaller value ( )CI H , the more consistent the hesitant fuzzy 

preference relation H . If ( ) 0CI H = , then H  is a consistent hesitant fuzzy 

preference relation satisfying complete consistency.  
Further, by Eqs.(3.77) and (3.78), we have 
 

( ) ( )( )2

1 1

2
( ) , ,

( 1)

n n
N N
ij ij

j i i

CI H d H H d h h
n n = + =

= =
−        (3.79) 

 

Let the normalized hesitant normalized Hamming distance be the distance 
measure, Eq.(3.79) can be rewritten as: 

 

( ) ( )( )2

1 1

2
( ) , ,

( 1)

n n
N N
ij ij

j i i

CI H d H H d h h
n n = + =

= =
−   

 

( ) ( )
( ) ( ){ }( ) ( )

2

( )( )

1 1 ,

2 1

( 1) l qN N
ij ij ij ij

n n qqN N
s ij ij

j i i h h h hh

S h h
n n l σ σ

σσ

= + = ∈ ∈

  
  = −

 −    
 

   

(3.80) 
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Let 

   
 

( ) ( )
( ) ( ){ }( ) ( )

( )( )

,

1
q qN N

ij ij ij ij

qqN N
ij s ij ij

h h h hH

S h h
l σ σ

σσ
ε

∈ ∈

 
 = −
 
 


       

(3.81) 

 
then Eq.(3.81) can be rewritten as: 

 

      2

1 1

2
( ) ( )

( 1)

n n

ij
j i i

CI H
n n

ε
= + =

=
−                    (3.82) 

 
In group decision making, the more consistent the preferences provided by the 

decision group, the more meaningful the yield of results. According to Eq.(3.79), 
the values of CI are affected by ς  which reflects the DMs’ risk preferences. To 

obtain the highest consistency level, according to Eq.(3.80), we can build the 
following model to determine the optimal ς : 

 

( ) ( ) ( )( )2

1 1

2
min ( ) min , min , ,

( 1)

. .  0 1.

n n
N N
ij ij

j i i

CI H d H H d H H d h h
n n

s t ς
= + =

 
= = =  − 

≤ ≤



  
(3.83) 

 
With the optimal ς , we can obtain the unique consistent hesitant fuzzy 

preference relation H  and the unique ( )CI H  with the highest consistency 

level. 
When a group of DMs provide preferences over paired comparisons of 

alternatives, they often have certain consistency tendency (Dong et al. 2008; Zhu et 

al. 2013b; De Jong 1984). So the values of ijε  relatively centralize the domain 

close to zero. Thus, we consider that ijε ( i j< ) are independently and normally 

distributed with the mean 0  and the standard deviation σ .  
 

Theorem 3.11 (Zhu et al. 2013b). 
2

( 1) 1
( )

2

n n
CI H

σ
−  × 

 
 is a chi-square distribution 

with ( 1)

2

n n −  degrees of freedom, namely, 
2

2( 1) 1 ( 1)
( ) ~

2 2

n n n n
CI H χ

σ
− −   ×   

   
, 
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on the condition that ijε ( i j< ) are independent and normally distributed with the 

mean 0  and the standard deviation σ , namely, ( )2~ 0,ij Nε σ .  

 
Proof. Since  

         

 

                 

22

1 1

( 1) ( )

2

n n
ij

j i i

n n CI H ε
σ σ= + =

 −   =        
 

             

(3.84)

 

 
 

and
 

ijε
σ  

is independent normally distributed with mean 0 and standard 

deviation 1, consequently, 

2
( 1) 1

( )
2

n n
CI H

σ
−  × 

 
2 ( 1)

~
2

n nχ − 
 
 

, which 

completes the proof. 

Assume 2 2
0σ σ= , and ( )2

00,ij Nε σ , then the consistency measure is to 

test hypothesis 0J  versus hypothesis 1J , denoted by 0J : 2 2
0σ σ≤ ; 1J : 

2 2
0σ σ< . The degrees of freedom of the estimator 

2

2

1 1

n n
ij

j i i

ε
χ

σ= + =

 
=   

 
   is 

( 1)

2

n n −
, this is an one-sided right-tailed test, and we can get the critical value 

0αλ
 
of 2χ  distribution at the significance level 0α . Consequently we have  

 

00

2
( )

( 1)
CI H

n n ασ λ=
−

                   

 (3.85) 

 

If ( ) ( )CI H CI H≤ , then H  is a hesitant fuzzy preference relation with the 

acceptable consistency; If ( ) ( )CI H CI H> , then the consistency level of H  

is unacceptable.  
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The parameters 0α  and 0σ  are determined by the DMs according to actual 

situations. Table 3.7 (Zhu et al. 2013b) shows the values of ( )CI H  for different 

n  with 0.1α =  and 0 0.2σ = . 

Table 3.7.  The values of ( )CI H  (
0 00.1, 0.2α σ= = ) 

3n =  4n =  5n =  6n =  7n =  8n =  

0.0882  0.1211  0.1396  0.1510  0.1586  0.1643  

 
For the hesitant fuzzy preference relations with unacceptable consistency, we 

present a modeling method to improve the consistency.  

Assume a hesitant fuzzy preference relation ( )ij n nH h ×=  with the unacceptable 

consistency, according to Eq.(3.83), we can obtain its consistent hesitant fuzzy 

preference relation ( )ij n n
H h

×
=  and the optimized parameter ς . Let m NH =   

( )m N
ij n n

h
×

 be the modified normalized hesitant fuzzy preference relation with the 

acceptable consistency, where  
 

( ) ( ) ( )( ) ( ) ( )
,

q q qm N N
ij ij ijh h x

σ σ σ
= +

 
, 1, 2, , ,i j n i j= <        (3.86) 

 
and  

 

( ){ }( )
| 1, , ,N

ij

q

ij ij h
x x q l i j

σ
= = <

                
(3.87)

 
 

is the set of adjusted valuables, then we build the model as follows: 
 

( )2

1 1

2
min

( 1)

n n

s ij
j i i

S x
n n = + =

 
 − 

 
                  

 (3.88)  

 
with the conditions that 

 

( ) ( ) 0,

( ) ( ),

q q
ij ji

m

x x

CI H CI H

σ σ + =


≤
                        (3.89) 

 
where 
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s ij ij
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(3.90) 
 

Therefore, we can build an optimization model as follows: 
 

 

( )2

1 1

( ) ( )

2
min

( 1)

0
. .   

( ) ( )

n n

s ij
j i i

q q
ij ji

m

S x
n n

x x
s t

CI H CI H

σ σ

= + =

 
 − 
 + =


≤

 
                   (3.91) 

 

Based on the discussion above, we give the following algorithm to obtain a 
hesitant fuzzy preference relation with the acceptable consistency (Zhu et al. 
2013b): 

 
(Algorithm 3.6) 

Step 1. Assume a hesitant fuzzy preference relation, ( )ij n n
H h

×
= , and an 

optimized parameter  (0 1)ς ς≤ ≤ , we can obtain the optimal ς  and 

min ( )CI H  according to Eq.(3.83). Based on Table 3.7, if 

min ( ) ( )CI H CI H> , then go to Step 2; Otherwise, go to Step 3.  
 

Step 2. Using Eq.(3.91), we can get the modified normalized hesitant fuzzy 

preference relation m NH  and ( )mCI H , where ( ) ( )mCI H CI H≤ .  
 

Step 3. End. 
 

Example 3.10 (Zhu et al. 2013b). Assume a hesitant fuzzy preference relation 3H  

denoted as: 
 

3

{0.5} {0.8} {0.3} {0.6,0.7}

{0.2} {0.5} {0.5} {0.8}

{0.7} {0.5} {0.5} {0.2,0.3,0.4}

{0.4,0.3} {0.2} {0.8,0.7,0.6} {0.5}

H

 
 
 =
 
 
 

 

 
Using Eq.(3.83), we have  

 

, 

   .
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0ς = , ( )3 3 3min ( ) min , 0.1781CI H d H H= =  

and the consistent hesitant fuzzy preference relation 3H  of 3H . Then according 

to Table 3.7, we have 3 3min ( ) ( ) 0.1211CI H CI H> = . So 3H  needs to be 

optimized.  
Using Eq.(3.91), we can get the modified normalized hesitant fuzzy preference 

relation 3 :m NH   

 

3

{0.5} {0.7264,0.7264,0.7342} {0.3867,0.3867,0.3981} {0.5942,0.6057,0.6967}

{0.2736,0.2736,0.2658} {0.5} {0.4902,0.5000,0.5120} {0.7168,0.7264,0.7418}

{0.6133,0.6133,0.6019} {0.5098,0.50000,4880} {0.5} {0.28
m NH =

82,0.3867,0.4853}

{0.4058,0.3943,0.3033} {0.2832,0.2736,0.2582} {0.7118,0.6133,0.5147} {0.5}

 
 
 
 
 
 

 

 

and 3 3( ) 0.1211 ( ).mCI H CI H= =
 
Therefore, 3

m H  is of the acceptable 

consistency.  
Using the Grayscale, created by the Matlab Drawing toolbar, to present the 

hesitant fuzzy preference relations with different consistency levels in Example 
3.10, we can get Fig. 3.1 (Zhu et al. 2013b) which presents the inconsistent hesitant 

fuzzy preference relation 3H , the modified hesitant fuzzy preference relation 

3
m H  with the acceptable consistency, and the consistent hesitant fuzzy preference 

relation 3H . By observational analyses, the more consistency of the hesitant fuzzy 

preference relation, the more uniform of distribution on grayscale. 

 

 
Fig. 3.1. Grayscale of 3H , 3

m H  and 3H
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Fig. 3.2. Area of 3H , 3

m H  and 3H
 

 
Besides of the Grayscale, we also can use the area to present the three hesitant 

fuzzy preference relations in Fig. 3.2 (Zhu et al. 2013b), in which the consistent 
hesitant fuzzy preference relation performs more regular with respect to the areas in 
different colors than the inconsistent hesitant fuzzy preference relations. So the 
difference among the hesitant fuzzy preference relations which have different 
consistency levels can be recognized somehow in the two figures.  

For the hesitant fuzzy preference relations with the acceptable consistency, 
which ensures that the DMs provide almost consistent preferences, we now use the 
hesitant aggregation operators to aggregate the preferences in the hesitant fuzzy 
preference relations so as to derive the priorities to rank the alternatives.  

For a set of alternatives, 1 2{ , , }nA A A A=  , and a hesitant fuzzy preference 

relation H  constructed by the decision group. Following the β -normalization, 

we now develop an algorithm to deal with the prioritization problem (Zhu et al. 
2013b):  

 
(Algorithm 3.7) 

 
Step 1. Using Algorithm 3.6 to obtain the modified hesitant fuzzy preference 

relation m H  with the acceptable consistency. 

Step 2. Using the hesitant aggregation operators to aggregate preferences in m H . 

 
Step 3. Ranking all the alternatives and selecting the best one according to the 
aggregation results. 
 
Step 4. End. 

 



3.5   Deriving a Ranking from Hesitant Fuzzy Preference Relations 351 

 

Example 3.11 (Zhu et al. 2013b). Suppose that a constructed hesitant fuzzy 

preference relation 4H  associated with a group of DMs on four alternatives 

1 2 3 4{ , , , }A A A A A=  is shown as:  

 

4

{0.5} {0.2,0.3} {0.4,0.5,0.6} {0.8,0.9}

{0.7,0.8} {0.5} {0.5} {0.3,0.4}

{0.6,0.5,0.4} {0.5} {0.5} {0.5,0.6,0.7}

{0.2,0.1} {0.7,0.6} {0.3,0.4,0.5} {0.5}

H

 
 
 =
 
 
 

 

 

Step 1. Using Algorithm 3.6, we get the optimal 1ς = , and the modified 

normalized hesitant fuzzy preference relation 4
m NH  as: 

 

4

{0.5} {0.2649,0.3643, 0.3579}

{0.7351,0.6357, 0.6421} {0.5}

{0.5734,0.4841, 0.4183} {0.5000, 0.4977, 0.4994}

{0.2317,0.1516, 0.1367} {0.6203,0.5294, 0.5356}

{0.4266, 0.5159,0.5817} {0.7683, 0.848

            

m NH



=




4,0.8633}

{0.5000,0.5023, 0.5006} {0.3797,0.4706,0.4644}

{0.5} {0.5296,0.6158, 0.6839}

{0.4704,0.3842, 0.3161} {0.5}








 

 
Step 2. Using the HFA (Eq.(1.33)) and HFG (Eq.(1.35)) operators, respectively, to 

aggregate the i th line of preferences in m
ijh ( 1,2,3,4)j =  and get the overall 

performance value m
ih  corresponding to the alternative iA .  

Step 3. According to Definition 1.2, we can get the score values 

( )m
is h ( 1,2,3,4)i =  of the alternatives shown in Table 3.8 (Zhu et al. 2013b).  

 

Table 3.8. Score values and the ranking of alternatives 

 
1A  

2A  3A  
4A  Rankings 

HFA 0.5870 0.5377 0.5298 0.4247 1 2 3 4A A A A    

HFG 0.5008 0.5203 0.5217 0.3683 3 2 1 4A A A A    
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By the ranking results, 1A  and 3A  are the best alternatives in accordance with 

the HFA and HFG operators, respectively. That is because the HFA operator pays 
more attention to the number of arguments. However, the HFG operator focuses on 
the average of arguments, and the smaller deviation between arguments, the better 
the results.  

Furthermore, if we deal with this problem based on the α -normalization, we 

can obtain a reduced hesitant fuzzy preference relation 3H ′ , denoted by 

 

3

0.5 0.3 0.4 0.8

0.7 0.5 0.5 0.4

0.6 0.5 0.5 0.7

0.2 0.6 0.3 0.5

H

 
 
 ′ =
 
 
 

  
and the priority vector of the alternatives is 

3

T(0.3818,0.2545,0.2545,0.1091)
H

w = . 

So the ranking of the alternatives is 1 2 3 4A A A A   , which cannot 

distinguish 2A  and 3A . But we have 2 3A A  according to the ranking result 

in Table 2.8 based on the HFA operator. Therefore, the advantage of using the 
β -normalization to deal with hesitant fuzzy preference relations is that all 

preferences provided by the decision group can be taken into account, which is 
helpful to make better decisions. The β -normalization can be considered as a 

complementary principle to the α - normalization if the hesitant goal programming 
model based on the α -normalization cannot produce satisfying results. 

Since the proposed priority methods are specially used for hesitant fuzzy 
preference relations, and we find no any previous works concentrating on the 
decision making problems using hesitant fuzzy preference relations, it’s not easy to 
carry on with comparative illustrations. However, our models can be considered as 
extensions of some existing models dealing with fuzzy preference relations with 
multiplicative consistency, such as the goal programming models proposed by Xu 
(2004a). We now take an incomplete fuzzy preference relation from Xu (2004a), 
and use the model (M-3.3) to deal with it. 

 
Example 3.12 (Zhu et al. 2013b). For a decision making problem with a set of 

alternatives 1 2 6{ , ,..., }A A A A= . The DM provides his/her preferences over 

paired comparisons of the alternatives so as to construct an incomplete fuzzy 
preference relation as follows: 
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0.5 0.4 0.3 0.8 0.3

0.6 0.5 0.6 0.5 0.4

0.4 0.5 0.3 0.6

0.7 0.5 0.7 0.5 0.4 0.8

0.2 0.4 0.6 0.5 0.7

0.7 0.6 0.2 0.3 0.5

U

− 
 − 
 − −

=  
 
 −
  −   

 
According to the model (M-3.3), we have Eq.(3.92) as follows: 

 

( )
6 6

1 1,

min ij ij
i j i j

F d d+ −

= = ≠

= +   

1 2 12 12 1 4 14 14

1 5 15 15 1 6 16 16

2 3 23 23 1 6 24 24

2 6 26 26 3 4 34 34

0.6 0.4 0, 0.7 0.3 0,

0.2 0.8 0, 0.7 0.3 0,

0.4 0.6 0, 0.5 0.5 0,

. . 0.6 0.4 0, 0.7 0.3 0,

0.4

w w d d w w d d

w w d d w w d d

w w d d w w d d

s t w w d d w w d d

w

+ − + −

+ − + −

+ − + −

+ − + −

− − + = − − + =

− − + = − − + =

− − + = − − + =

− − + = − − + =

3 5 35 35 4 5 45 45

4 6 46 46 5 6 56 56

6

1

0.6 0, 0.6 0.4 0,

0.2 0.8 0, 0.3 0.7 0,

1, 0, , 0, , 1, 2,..., 6, .i i ij ij
i

w d d w w d d

w w d d w w d d

w w d d i j i j

+ − + −

+ − + −

+ −

=









 − − + = − − + =
 − − + = − − + =

 = > ≥ = ≠


 

    

(3.92) 

 
By solving Eq.(3.92), we can obtain the following results: 

 

12 12 14 14 23 23 34 34 35 35

46 46

15 15 16 16

24 24 26 26

45 45

(0.1412,0.2118,0.1412,0.3294,0.0941,0.0824)

0,

0, 0.0471, 0.0741, 0,

0, 0.0588, 0.0941, 0,

0.1600,

Uw

d d d d d d d d d d

d d

d d d d

d d d d

d d

+ − + − + − + − + −

+ −

+ − + −

+ − + −

+ −

=

= = = = = = = = =

= = =

= = = =

= = = =

= 56 560, 0, 0.0294.d d+ −









 = = =

 

 
So 4A  is the best alternative, which is the same as the result of Xu (2004a). 

 

. 
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3.6   Deriving Priorities in AHP-Hesitant Group Decision 
Making 

Analytic Hierarchy Process (AHP) (Saaty 1977, 1980, 1989) is one of the most 
popular and powerful techniques for decision making. AHP is built on a human 
being’s intrinsic ability to structure his perceptions or his ideas hierarchically, 
compares pairs of similar things against a given criterion or a common property, 
and judges the intensity of the importance of one thing over the other (Ernest and 
Kirti 1998). It has been widely used for MADM problems to rank, select, evaluate 
and benchmark decision alternatives (Golden et al. 1989; Vaidya and Kumar 2006).  

In conventional AHP, Saaty (1980) proposed four steps: (1) Modeling; (2) 
Valuation; (3) Prioritization; (4) Synthesis. The first of these steps involves the 
construction of a hierarchy at different levels of criteria, sub-criteria and 
alternatives. The top level of hierarchy represents the goal concerned in the 
problem, while the criteria, sub-criteria and alternatives are placed in the remaining 
levels.  

The valuation step incorporates the individual judgments that reflect the relative 
importance of elements at a level of hierarchy through pairwise comparison 
judgments, which are described as various preference relations, such as 
multiplicative preference relations (Saaty 1980), interval multiplicative preference 
relations, fuzzy preference relations and interval fuzzy preference relations, and so 
on (see, e.g. Orlovski 1978; Tanino 1984; Xu and Wei 1999; Yager 2004; Xu 
2004b; Chandran et al. 2005; Herrera et al. 2005). 

The third step considers the local and global priorities of each element of 
hierarchy. According to some common prioritization methods, the local priorities 
can be obtained, such as the eigenvector method (Saaty 1977), the logarithmic least 
squares method (Crawford and Williams 1985), and the logarithmic goal 
programming method (Bryson 1995). The eigenvector method and the logarithmic 
goal programming method are the most used two methods in practice, and have 
desirable properties respectively. Many researchers have studied on the 
comparisons between these methods so as to choose one with the best performance 
(Barzilai 1997; Zahedi  1986; Saaty 1990). Golany and Kress (1993) concluded 
that there is no prioritization method that is superior to the other ones in all cases. 
Every method has its own advantages and drawbacks, and we should choose a 
method according to the objective of the analysis. The global priorities of any level 
of hierarchy are calculated by applying the hierarchical comparison principle (Saaty 
1980) and reflect the priority of any level with respect to the main goal.  

In the final step, some aggregation procedures (the weighted arithmetic average 
and the geometric mean are the two most common ones) are used to synthesize the 
global priorities of alternatives so as to obtain the final priorities of the alternatives. 
Consequently, the ranking results of the alternatives can be obtained with these final 
priorities for decision making. 

The desirable characteristics of flexibility and adaptability of AHP permit its use 
in group decision making. Moreno-Jiménez et al. (2002) identified three  
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possibilities: (1) Group decision making; (2) Negotiated decision making; (3) 
Systemic decision making. In the first case, the individuals act jointly in pursuit of a 
common decision. In the second case, each individual solves the problem 
independently, and the agreement and disagreement zones are analyzed in order to 
reach a consensus. Finally, in the third case, each individual solves the problem 
individually, and a tolerance principle is used to look for a way of integrating all the 
positions.  

Since the judgments provided by individuals are not perfect in most cases, AHP 
specially allows the measurement of consistency or inconsistency degree in the 
preference relation, which is a desirable characteristic in contrast to other 
multi-criteria decision techniques. Saaty (1977) developed a consistency index (CI) 
and a consistency ratio (CR) to measure the level of inconsistency. If 0.1CR < , 
then the preference relation is considered to be of acceptable consistency 
(otherwise, unacceptable consistency), and AHP may not yield meaningful results. 
Many methods concentrate on the improvement of preference relations with 
unacceptable consistency (Xu and Wei 1999; Cao et al. 2008). Aguarón and 
Moreno-Jiménez (2003) proposed the use of the geometric consistency index 
(Crawford and Williams 1985) with the row geometric mean prioritization 
procedure. 

In AHP-based group decision making (AHP-GDM), there are two systems of 
approaching group decision making with a view to aggregating the individual 
judgments into a group judgment. Forman and Peniwati (1998) showed that 
depending on whether the relative importance of individuals in the group assumed 
to be equal, or incorporated in the aggregation process, they are specified as: (1) 
Aggregating individual judgments (AIJ); (2) Aggregating individual priorities 
(AIP). In AIJ, individual identities are lost with every stage of a synergistic 
aggregation of individual judgments, and a synthesis of hierarchy produces the 
group’s priorities. At each level, a merging process occurs step by step. A common 
hierarchy should be agreed on first by the group working together, and then the 
relative importance of the criteria, after that, the merging process occurs continually 
at the judgment level. In such a way, the individuals act in concert and pool their 
judgments, and they become a new “individual” and behave like one. Three main 
prioritization procedures are utilized to aggregate individual judgments: consensus, 
voting, and aggregated methods including the weighted arithmetic average and the 
geometric mean (Saaty 1989). In the consensus and voting approaches, the group 
agrees upon all the comparison judgments. If the group is unwilling or unable to 
vote or cannot achieve a consensus, then individual judgments are aggregated into 
an aggregated group judgment. Aczel and Saaty (1983) showed that a geometric 
mean rather than the weighted arithmetic average in AIJ must be used for 
aggregation of individual judgments. The three prioritization procedures 
considering all individuals’ judgments naturally result in a compromise group 
solution. 

In AIP, the priorities are obtained from each individual hierarchy, and then 
aggregated into final group priorities. For individuals, they can act in their own 
right, with different value systems or different hierarchies. We are just concerned 
about each individual’s resulting alternative priorities. In this situation, the Pareto 
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principle (It says that given two alternatives 1A  and 2A , if each member of a 

group of individuals prefers 1A  to 2A , then the group must prefer 1A  to 2A ) is 

satisfied. Forman and Peniwati (1998) stated that both the weighted arithmetic 
average and the geometric mean could be used to aggregate the individual’s 
priorities.  

In AHP-GDM, suppose that individuals in the group are required to provide 
comparison judgments in accordance with Saaty’s fundamental scale (Saaty 1980, 
1994) with respect to a level of hierarchy, which reflect the relative importance 
degrees of elements. Due to their different levels of expertise and the complexity of 
the problem, individuals consequently provide different judgments. Traditional 
AHP uses the prioritization procedures to aggregate individual judgments resulting 
in a compromise result. However, in practice, a best solution is naturally the 
ultimate goal in decision making rather than a compromise result. Therefore, Zhu 
and Xu (2013b) utilized the desirable characteristic that the measurement of 
consistency of AHP, to relinquish some judgments for the good of the group so as to 
find the best solution which has the highest group consensus degree. The premise 
condition of this approach is that the group acts together as a unit, hesitates about 
several possible judgments. According to Moreno-Jiménez et al. (2002), this should 
be a group decision making problem but without a common decision due to several 
possible values. We consider this as AHP-hesitant group decision making 
(AHP-HGDM) as an extension of AHP-GDM. 

In AHP-HGDM, the group does not have some degree of uncertainty represented 
by interval values or fuzzy values, but hesitates about several possible judgments. 
We do not aggregate individuals’ judgments, but try to select a group judgment 
among all possible ones so as to obtain the best group solution under limited 
options. Since the group acts as a unit, each possible judgment from the group can 
be considered as a final choice, we confront with a selection problem rather than 
aggregation, consensus or voting. Existing researches on AHP-GDM mainly 
concentrate on these prioritization procedures based on comparison judgments 
represented by crisp values (Saaty 1980, 1994), interval values (Saaty and Vargas 
1987; Arbel 1989; Zahir 1991; Sugihara and Tanaka 2001; Sugihara et al. 2004), or 
triangular fuzzy values (Van Laarhoven and Pedrycz 1983; Chang 1996; Zhu et al. 
1999). But AHP-HGDM is characterized by a selection process based on some 
possible comparison judgments.  

AHP-HGDM also involves the four steps of Saaty’s AHP. The first and last 
steps, i.e. modeling and synthesis, obey Saaty’s approach. The second step, 
valuation, allows the group to give several possible comparison judgments so as to 
construct a preference relation defined as hesitant multiplicative preference 
relations. The prioritization step, deriving priorities from the hesitant multiplicative 
preference relation, is the major constituent of AHP-HGDM.  

The eigenvector method and the logarithmic least squares method are the two 
most known prioritization methods, where the eigenvector method is the original 

Saaty’s method. Assume a multiplicative preference relation ( ) n n
ij n n

B b ×

×
= ∈ℜ , 

and a priority vector 1 2( , ,=w w w T, )nw  derived from B , the eigenvector 
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method is based on the fact that small perturbations of the elements ijb  from the 

perfect ratios i

j

w

w
 lead to small perturbations of the eigenvalues of B  around the 

eigenvalues of a consistent preference relation of B . The eigenvector method is 
not suitable for AHP-HGDM which has difficulty in obtaining the eigenvalues from 
a hesitant multiplicative preference relation. The logarithmic least squares method, 
also known as a geometric mean method, is based on the assumption that the 

elements of the priority vector T
1 2( , , , )nw w w w=   should best satisfy the 

property i
ij

j

w
b

w
≈ . This priority assessment is formulated as a constrained 

optimization problem: 
 

( )2

1 1

min ln ln ln
n n

ij i j
i j

b w w
= =

− +                   (3.93) 

                    . .s t
1

1
n

i
i

w
=

= , 0iw ≥ , 1, 2, , .i n=   

 
This method tries to find a solution satisfying “all constraints” and results in a 
compromise result, which is also not suitable for the selection problem in 
AHP-HGDM.  

As an alternative method of the eigenvector method and the logarithmic least 
squares method, Mikhailov (2000) developed a fuzzy programming method, which 
transforms the prioritization problem into a fuzzy programming problem that can 
easily be solved as a standard linear program. He compared the fuzzy programming 
method with the eigenvector method, the logarithmic least squares method and the 
logarithmic goal programming method et al., and showed that the fuzzy 
programming method outperforms some of the existing methods, especially in 
highly inconsistent cases. The fuzzy programming method has some attractive 
properties, such as simplicity of the computation algorithm, good precision and 
rank preservation. It easily deals with missing judgments and provides a natural 
consensus indicator for measuring the satisfaction degree of the group solution.  

Based on the advantages of fuzzy programming method, Zhu and Xu (2013b) 
developed a hesitant fuzzy programming method as a prioritization method to 
derive priorities from hesitant multiplicative preference relation in AHP-HGDM.  

3.6.1   Description of the Prioritization Method 

In this subsection, we give a description of the resolution process of the hesitant 
fuzzy programming method. The hesitant fuzzy programming method is a 
prioritization method used for deriving priorities from hesitant multiplicative 
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preference relations in AHP-HGDM. The hesitant multiplicative preference relation 
is constructed by group pairwise comparison judgments, which is stated as follows 
(Zhu and Xu 2013b): 

Let 1 2{ , , , }nA A A A=  ( 2n ≥ ) be a finite set of elements at a level of 

hierarchy in AHP-HGDM. The preference information of a group on A  is 

described by a hesitant multiplicative preference relation ( )ij n nR r ×= A A⊂ × , 

where { }| 1, 2, ,
ij

q
ij ij rr r q l= =  (

ijrl  is the number of comparison judgments in 

ijr ). ijr  denotes the comparison judgment element iA  with respect to jA . The 

measurement of ijr  is described using a ratio scale and in particular, as given by 

Saaty (1980), 
1 1 1 1

, , , , ,1,2, ,7,8,9
9 8 7 2ijr  ⊂  
 

  : ={1}ijr ( ={1}jir ) 

denotes the indifference between iA  and jA , ={9}ijr
1

=
9jir

  
    

 denotes 

that iA  is unanimously preferred to jA , and 
1 1 1

, , , ,1,2, ,7,8
8 7 2ijr  ∈ 
 

   

denotes the intermediate evaluations. This hesitant multiplicative preference 
relation satisfies the conditions as shown in Eq.(3.6).  

If there are missing elements in the hesitant multiplicative preference relation, 
then it reduces to an incomplete hesitant multiplicative preference relation; If 

=1
ijrl  for all , 1,2 ,i j n=  , which means that the group provides unique 

comparison judgments for all ijr ( , 1,2 ,i j n=  ), then ( )ij n nR r ×=  reduces  

to a multiplicative preference relation ( )ij n nB b ×= .
 

B  is perfectly consistent  

if ik kj ijb b b=
 
( , ,i j k∈{1,2, , }n ). It’s clear that R  can reduce to various 

multiplicative preference relations depending on the selection of 
q

ijr  from 

ijr ( , 1,2 , )= i j n . 

The hesitant fuzzy programming method is a linear programming method 
combined with a selection process. According to the hesitant fuzzy programming 
method, a number of possible group solutions can be obtained from a hesitant 
multiplicative preference relation. In such a case, we should select one that 
performs better than others. The hesitant fuzzy programming method provides a 
group consensus index ( GCI ) that measures the satisfaction or dissatisfaction 
degree for a possible group solution, that is, the higher GCI , the better of the 
group solution. Thus, we can select out a best one with the highest value as a final 
group solution among all possible ones by the GCI . 
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In most cases, by solving the linear programming model and the selection 
process, we can get a unique final group solution with the highest GCI , however, 
sometimes, we need further decisions due to several group solutions with the same 
highest GCI . We refer to an anonymous feedback mechanism in this situation to 
help the group members revise their judgments. The resolution process of the 
hesitant fuzzy programming method at a level of hierarchy in AHP-HGDM can be 
graphically represented in Fig. 3.3 (Zhu and Xu 2013b) (in which HMPR denotes 
hesitant multiplicative preference relation, and HFPM denotes hesitant fuzzy 
programming method), which includes two steps and a feedback mechanism (Zhu 
and Xu 2013b):  

 
Step 1. Use the hesitant fuzzy programming model to obtain all possible group 
solutions with the GCI  from the hesitant multiplcative preference relation; If 
there is a unique one with the highest GCI , then select it as the final group 
solution and go to Step 2; If not, then return suggestions to the group to help them 
revise their judgment so as to construct a new hesitant multiplcative preference 
relation, and then repeat Step 1 until we have the final group solution.  
 
Step 2. The priorities of elements are got according to the final group solution. 

 

 
 

Fig. 3.3. Resolution process of the hesitant fuzzy programming method 

3.6.2   Hesitant Fuzzy Programming Method 

Zhu and Xu (2013b) gave a geometric representation of the priorities derivation 
problem based on the hesitant multiplcative preference relation. Consider a group, 
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comparing pairwisely n  elements at the same level of hierarchy in AHP-HGDM, 

constructing a hesitant multiplcative preference relation, ( )ij n nR r ×= ,  

where { }| 1, 2, ,
ij

q
ij ij rr r q l= =  . Suppose that the priority vector is 

T
1 2( , , , )nw w w w=  , where 

1

1
n

i
i

w
=

= , 0iw ≥ , 1,2, ,= i n . The 

comparison judgment ijr  is the estimation of the ratio i

j

w

w
. Suppose 

0q
ij j ir w w− =  for all upper triangular elements in R , i.e., 1, 2, , 1i n= − , 

2,3, ,j n=  , j i> , 1,2, ,
ijqq l=  , they can be represented as a set of linear 

equalities: 
 

{ }= 0 | 1, 2, , ,
ij

q
ij ij r

R w R w q l= =  1,2, , 1, 2,3, , ,i n j n j i= − = >   

 (3.94) 
 

where 0q
ijR w =  defines a , ,i j q  grouped hyperplane in the n -dimensional 

priority space, denoted by 
 

{ }( ) | 0q q q
ij ijG w w R w= =                       (3.95)   

Consequently,  
  

{ }( ) ( ) | 1, 2, , ,
ij

q
ij ij rG w G w q l= = 

 
1,2, , 1, 2,3, , ,i n j n j i= − = >   

 (3.96) 
 

Let { }T
1 2 1 2( ) ( , , , ) | 1o n nG w w w w w w w w= = + + + =   be the 

simplex hyperplane. Since the priority vector must lie on ( )oG w ,
 
we should 

consider the intersections of ( )q
ijG w  and ( )oG w . Let ( )q

ijL w  indicate the 

, ,i j q  grouped hyperline defined by the intersection between ( )q
ijG w  and 

( )oG w , where 

 

( ) ( ) ( )q q
ij ij oL w G w G w=                       (3.97) 
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Consequently, 
 

{ }( ) ( ) | 1, 2, , ,
ij

q
ij ij rL w L w q l= =  1,2, , 1, 2,3, , ,i n j n j i= − = >   

 (3.98) 

Then the intersection of the , ,i j q  grouped hyperlines ( )q
ijL w  for all i  and 

j  on ( )oG w  is represented as: 

  

( ) ( )q q
ij

i j

L w L w= 1,2, , 1, 2,3, , ,i n j n j i= − = >         (3.99) 

  
which indicates the q th solution of priority vector at a level of hierarchy in 

AHP-HGDM, where ( ) ( )q
ij ijL w L w∈ , 1,2, , rq l=  , 

,
ijr r

i j

l l= ∏ . 

Consequently, we have a set of all possible solutions as: 
  

              
{ }

( ) ( )
( ) ( ) | 1, 2, ,

q

q
r

L w L w
L w L w q l

∈
= = = 

      
      (3.100) 

Each solution derived from the prioritization problem, ( )qL w ,
 
corresponds to a 

multiplicative preference relation as a selection result from the multiplicative 

preference relation hesitant multiplicative preference relation, ( )ij n nR r ×= . If 

there exists a consistent multiplicative preference relation, ( )ij n nB b ×= , selected 

from R , then ( )qL w  on the simplex hyperplane is not empty and contains only 

one point which gives the solution of 0q
ijR w =  for all i  and j  under the 

conditions 
1

1
n

i
i

w
=

= , 0iw ≥ , 1,2, ,= i n . If we have several solutions, 

which means that there are several consistent multiplicative preference relations, 
selected from R , then we should refer to the feedback mechanism discussed in 
Subsection 3.6.1.  

In practice, the group tries to achieve a consensus so as to provide constructive 
suggestions. Thus, it’s reasonable to try to find a solution that satisfies all judgments 
“as much as possible” at a level of hierarchy in AHP-HGDM. It means that a 
priority vector satisfies all equalities approximately, represented as a system of 
fuzzy equalities: 

 
  

0,q
ijR w =

 
1,2, , 1, 2,3, , ,i n j n j i= − = >             (3.101) 
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where q
ij ijR w R w∈ , q q

ij i ij jR w w r w= − , the symbol “ = ” denotes the statement 

“approximately equal to”.   

If the ratio of priorities
 

i

j

w

w
 equals q

ijr , the degree of the group satisfaction is 

equal to one; Otherwise, the degree of satisfaction should decrease to some 
deviation limits. Therefore, we can use the fuzzy sets to describe such conditions. 

Assume that the satisfaction for the hyperplane 0q
ijR w =  is measured by a linear 

membership function, ( )q
ijm w , and ε  is the deviation parameter determined by 

the group. The membership function is linearly increasing over the interval 
[ ,0]−∞ , and linearly decreasing over the interval [0, ]+∞ . In the case 

0q
ijR w = , the membership ( ) 1q

ijm w =  indicates the complete satisfaction; In the 

case [ , ]q
ijR w ε ε∈ − ,

 
the membership 0 ( ) 1q

ijm w≤ ≤  indicates partial 

satisfaction; In the case [ , ]q
ijR w ε ε∉ − , ( ) 0q

ijm w <  indicates dissatisfaction. The 

membership function is defined as a L-fuzzy sets taking values in the range 
[ ,1]−∞ , which can measure not only the degree of satisfaction, but also the degree 

of dissatisfaction. 

Therefore, the fuzzy equality Eq. (3.101), on the simplex hyperplane ( )oG w ,
 

can be characterized by a linear convex membership function: 
  

                

   

1 ,    0
( )

1 ,    0

q
ij q

ij
q q
ij ij q

ij q
ij

R w
if R w

m R w
R w

if R w

ε

ε

− ≥
=

+ <
    

         (3.102)

 

where q
ij ijR w R w∈ , and the deviation parameter ε  is determined by the group. 

The intersection of the , ,i j q  grouped membership function ( )q
ijm w  for all 

i  and j , is defined as the q th fuzzy feasible area ( )qL w  which is also a 

membership function: 
 

{ }( ) min ( ) | 1, 2, , 1, 2,3, , ,q

q
ijL

m w m w i n j n j i= = − = >  
    

(3.103) 

If ε  is large enough, then ( )qL w  on ( )oG w
 
is not empty; If ε  is small or 

judgments given by the group are very inconsistent, then the membership function 
can take negative values according to the L-fuzzy sets.  
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On the basis of the results obtained by Dubois and Fortemps (1999) on the best 
solutions to the max-min optimization problems with convex domains, Eq.(3.103) 
is a convex fuzzy set, and we can obtain a unique best solution of the priority vector 

T
1( , , )nw w w=   with a maximum degree of membership for the k th fuzzy 

feasible area defined as ( )qλ
 
(Zhu and Xu 2013b): 

 

{ }( ) ( ) max min ( ) | 1, 2, , 1, 2,3, , ,q

q q
ijL

m w m w i n j n j iλ = = = − = >  
 

(3.104) 
 

Proof. Let the solutions of priority vector obeying the membership function 

Eq.(3.102) be the domain Ο . Suppose that two best solutions 1w  and 2w  in Ο  

satisfying ( ) ( )1 2 ( )
q q

q

L L
m w m w λ= =  , and their convex combination is 

1 2(1 )w w wα α= + −
 
(0 1)α< < . Thus, we have 

( ) ( ){ }1 2( ) min ,q q qL L L
m w m w m w>  

                 
(3.105) 

thus 
( )( )q
q

L
m w λ>                           

 
(3.106) 

Therefore, 1w  and 2w  are not the best solutions of priority vector. In this 

application, there exists only one unique solution which provides the priority vector 

coherent with all comparison judgments for the fuzzy feasible area ( )qL w .  

For ( )qL w ,
 
the formulation of the max-min problem given by Eq.(3.104) is the 

fuzzy programming method developed by Mikhailov (2000), which can be stated as 
follows: 

 

( )
( )

( )

max  

. .   .

q

q q q
ij ijs t m R w

λ

λ




≤                       
 
(3.107) 

 
As introduced by Mikhailov (2000), Eq.(3.107) is similar to the maximizing 

decision rule in the decision making in fuzzy environment with fuzzy goals and 
fuzzy constraints, proposed by Bellman and Zadeh (1970). This prioritization 
problem can be seen as the fuzzy linear programming problem studied by 
Zimmermann (1976). According to Eq.(3.102), Eq.(3.107) can be represented as the 
following linear programming problem (Zhu and Xu 2013b): 
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( )

( )

( )

1

max  

. .   ,

       ,

       1, 2, , 1, 2,3, , , ,

       1, 0, 1, 2, , .

q

q q
ij

q q
ij

n

i i
i

s t R w

R w

i n j n j i

w w i n

λ
ελ ε

ελ ε

=





+ ≤
 − ≤
 = − = >


= > =




 



            (3.108)  

 

The group solution to Eq.(3.108) is a vector ( )( )TT( ) ( ) ( ),q q qw wλ= , and in 

the process of solving Eq.(3.108), we can obtain a corresponding multiplicative 

preference relation
 

( )qB
 
with ( )qw  as a selection result from R . The first 

component of the group solution, ( )qλ , indicates the maximum membership 

degree. By Eqs.(3.102) and (3.104), we have ( )( ) ( )q

q q q
ij ijL

m w m R wλ = ≤ . 

Since the membership function ( )q q
ij ijm R w  is defined as a L-fuzzy set taking 

values in the range [ ,1]−∞ , thus ( ) 1qλ ≤ .
 
If ( ) 1qλ = , then

 
( )qB  is consistent; 

If ( )0 1qλ≤ < , then ( )qB  is approximately consistent within the tolerance 

parameter ε ; If ( ) 0qλ < , then ( )qB
 
is inconsistent. Therefore, ( )qλ  can be 

considered as a GCI  that measures the satisfaction or dissatisfaction degree for a 
possible group solution, the larger the GCI , the better consensus degree of the 
group solution.  

The second component of the group solution is a priority vector ( )qw  under 
( )qλ . For all fuzzy feasible areas ( )qL w , 1,2, , rq l=  , by solving Eq.(3.108), 

we have { }( ) | 1,2, ,q
rw w q l= =  . In order to obtain a final group solution, we 

should select out the largest *λ  that reflects the maximum degree of satisfaction, 

denoted by  
 

{ }* ( )max | 1, 2, ,q
rq lλ λ= =                   (3.109) 
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For each *λ , we have the final group solution ( )( )TT* * *,w wλ= , and a 

corresponding multiplicative preference relation *B . If we have several ( )qλ
 
that 

have the same greatest value of GCI , but under each ( )qλ , there is a different 
( )qw , then in such a case, we should refer to the anonymous feedback mechanism 

introduced in Subsection 3.1.  
The key of the anonymous feedback mechanism is to provide suggestions to help 

the group revise their judgments. Assume that we have a set 

{ }( )
0| 1,2,...,q q qλ= = , where each element in the set has the same greatest 

value. Under ( )qλ , their corresponding multiplicative preference relations are 

( )qB ( 01, ,q q=  ), where ( )( ) ( )q q
ij n n

B b
×

= , 01, ,q q=  . Based on 

( )qB ( 01, ,q q=  ), we construct a new hesitant multiplicative preference relation
 

( )0 0( ) ( )q q
ij n n

R r
×

= , where { }0 0( ) ( )1, ,q q
ij ij ijr b b=  , as a suggestion for the group to 

provide judgments within ( )qR . According to the anonymous feedback 

mechanism, we can find the final group solution to a level of hierarchy in 
AHP-HGDM.

 
Based on the GCI , we can easily select the final group solution that has the 

maximum degree of satisfaction without an additional computation process for the 

group consensus degree. The value of *λ  depends on the values of the deviation 

parameter ε , for different ε , we have different *λ . A large value of ε  can 

ensure non-emptiness of the global fuzzy feasible and a positive value of *λ . 

However, for a same prioritization problem at a level of hierarchy, utilizing the 

hesitant fuzzy programming method, the final group solution ( )( )TT* * *,w wλ=
 

always has the same priority vector *w  although there are different *λ  with 

respect to different ε . Therefore, *λ  can be considered as an intermediate 

parameter used for the selection process in the hesitant fuzzy programming method, 
takes values within ( ,1]−∞ . It’s not necessary to set a large value of ε  to ensure 

a positive *λ , we can always obtain the same priority vector in the final group 

solution. Without loss of generality, we can set 1ε =  in practice. 
In AHP-GDM, both the aggregation approaches, AIJ and AIP, need group 

synthesis and prioritization (Bryson and Joseph 1999). However, in AHP-HGDM, 
all the group comparison judgments are represented by the hesitant fuzzy 
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programming method, a synthesis procedure that combines the AIJ or AIP into 
group judgments is not necessary, and a final group solution with the highest 
satisfaction degree can be obtained directly by the hesitant fuzzy programming 
method. Furthermore, AIJ and AIP need full consistent comparison judgments for a 
set of elements. In hesitant fuzzy programming method, the group is freedom to 
provide comparison judgments, it means that the group can give crisp, several 
possible, or even ignore some comparison judgments, and the group does not need 
to ensure the consensus degree of their judgments, which is practical and effective 
in actual applications. According to comparison judgments from the group, we can 
construct a hesitant multiplicative preference relation or incomplete hesitant 
multiplicative preference relation, and it should be noted that if the group provide 
full crisp pairwise comparison judgments, then the hesitant multiplicative 
preference relation reduces to a multiplicative preference relation, and the hesitant 
fuzzy programming method reduces to the fuzzy programming method. 

3.6.3   Numerical Examples 

In this subsection, we give two examples. The first one illustrates the hesitant fuzzy 
programming method in detail. The second shows an application of the method to 
the water conservancy in China introduced by Zhang (2009). 

 
Example 3.13 (Zhu and Xu 2013b). We first give a simplified example for 
illustrative purpose and for better understanding of the hesitant fuzzy programming 
method. Consider a group, comparing pairwisely four elements at a level of 
hierarchy in AHP-HGDM and providing the following hesitant multiplicative 
preference relation:  

 

{ } { }

{1} {2,3} {6,7} {1,2,3}

1 1 1 1
, {1} {2,3} ,

3 2 8 7

1 1 1 1 1
, , {1}

7 6 3 2 3

1 1
, ,1 7,8 3 {1}

3 2

R

 
 
           

 =                  
 
      

 

 
Remark 3.1 (Zhu and Xu 2013b). Since the hesitant fuzzy programming method 
only takes the upper triangular elements in the hesitant multiplicative preference 
relation into account, we only give the upper triangular elements in the hesitant 
multiplicative preference relation or the incomplete hesitant multiplicative 
preference relation. 
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By solving the linear programming model Eq.(3.108), and the selection process 
Eq.(3.109) (accomplished by the use of the Matlab optimization toolbox), we can 

obtain the final group solutions ( )T* * * * * *
1 2 3 4, , , ,w w w w wλ=  by the hesitant 

fuzzy programming method, shown in Table 3.9 (Zhu and Xu 2013b). 
 

Table 3.9. The final group solutions for different deviation parameter ε  

 1ε =  0.5ε =  0.1ε =  0.05ε =  

*λ  0.9423  0.8846  0.4231  0.1538−  

*
1w  0.4038  0.4038  0.4038  0.4038  

*
2w  0.1155  0.1155  0.1155  0.1155  

*
3w  0.0769  0.0769  0.0769  0.0769  

*
4w  0.4038  0.4038  0.4038  0.4038  

 
It's clear that for different ε , we have different *λ , but under each *λ , but 

have the same priority vector * T(0.4038,0.1155,0.0769,0.4038)w = . As 

discussed in Section 3.6.2, we set 1ε =  in the rest of subsection. 
If R  is incomplete, shown as:  

 

'

{1} {2,3} {6,7}

1 1
, {1} {3,2}

3 2

1 1 1 1
, , {1} {1/ 3}

7 6 3 2

{3} {1}

R

− 
 
  −   =  
           
 − − 

 

 
By the hesitant fuzzy programming method, we can obtain two group solutions that 
have the same maximum satisfaction degree, shown as: 
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(1) T(1.0000,0.4615,0.2308,0.0769,0.2308)w =  
(2) T(1.0000,0.5000,0.1667,0.0833,0.2500)w =

 
 

Their two corresponding multiplicative preference relations (1)B  and (2)B  can 

be obtained in the resolution process of the hesitant fuzzy programming method, 
given by  

(1)

1 2 6

1
1 3

2
1 1

1 1/ 3
6 3

3 1

B

− 
 
 −
 =  
 
 
 − − 

,  (2)

1 3 6

1
1 2

3
1 1

1 1 / 3
6 2

3 1

B

− 
 
 −
 =  
 
 
 − − 

 

 
In this case, we refer to the anonymous feedback mechanism: We first construct 

the hesitant fuzzy programming method by (1)B  and (2)B  as follows: 
 

(2)

{1} {2,3} {6}

1 1
, {1} {2,3}

3 2

1 1 1 1
, {1}

6 3 2 3

{3} {1}

R

− 
 
  −   =  
                 

 − − 

 

 
Return (2)B  to the group as a suggestion for the group to provide further 

judgments within (2)B . Assume that the group revises the judgment (2)
12 {2,3}r =  

into (2)
12 {2}r = , and retains (2)

23 {2,3}r = . By the hesitant fuzzy programming 

method, we can get the final group solution as: 
 

* T(1.0000,0.4615,0.2308,0.0769,0.2308)w = (1)w=  
 

In most cases of the hesitant fuzzy programming method, the final group solution 
is unique, especially a large number of elements at a level of hierarchy. Thus, we do 
not commonly need the corresponding multiplicative preference relation which is 
only used in the feedback mechanism.  
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Example 3.13 (Zhu and Xu 2013b).  As one of the infrastructure industries of a 
national economy, water conservancy plays a great role for the sustainable 
development. Zhang (2009) analyzed the necessity to find out the efficient spatial 
allocation of water conservancy investment of capital construction (WCICC) in 
practical work of water conservancy in China, and used AHP-GDM combined with 
survey to deal with this problem. Twenty-seven qualified DMs (experts) are invited 
to attend a survey under the assistance provided by the Ministry of Water 
Resources.  

The main projects of water conservancy construction include reservoir  
project, irrigation project, flood control and prevention project, waterlog  
control project, water supply project, hydropower project, and water and soil 
conservation project. Nine river basins in China are taken into account: Yangtse 
River basin, Yellow River basin, Haihe and Luanhe Rivers basin, Song and Liao 
Rivers basin, Inland Rivers basin, Huaihe River basin, Zhujiang River basin, 
South-east Rivers basin, and South-west Rivers basin, shown in Fig. 3.4 (Zhang 
2009).  

Zhang (2009) gave a hierarchy structure of this problem, that is, the reasonable 
allocation of WCICC among the nine river basins as the goal level, the seven kinds 
of projects as the criterion level and the nine major river basins as the scheme level. 
A survey form including the short-term and the medium-term circumstances for 
DMs (experts) is designed, which is used to collect pairwise comparison judgments 
from the DMs so as to judge the relative importance degree of the seven kinds of 
water conservancy projects and of the nine river basins in each kind of project of 
WCICC.  
 

 
Fig. 3.4. China’s nine major river basins 
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At each level of hierarchy, the DMs are required to provide crisp pairwise 
comparison judgments, and the eigenvector method is used as the prioritization 
method to derive priorities. Take the short-term of the water conservancy 
construction as an example, Zhang (2009) gave the following crisp pairwise 
comparison judgments of the water conservancy projects, shown in Table 3.10  
(Zhu and Xu 2013b): 

 
Table 3.10. The crisp pairwise comparison judgments of the water conservancy projects  

 Reservoir 
project 

Irrigation 
project 

Waterlog 
control 
project 

Flood 
control and 
prevention 

project 

Water 
supply 
project

hydropower 
project 

water and soil 
conservation 

project 

Reservoir project 1 3 3 1

4
 1

3
 

4 2 

Irrigation project  1 1 1

6
 1

5
 

2 1

2
 

Waterlog control 
project 

  1 1

6
 1

5
 

2 1

2
 

Flood control and 
prevention 

project 

   1 2 7 5 

Water supply 
project 

    1 6 4 

hydropower 
project 

     1 1/3 

water and soil 
conservation 

project 

      1 

 
For comparison, we use the hesitant fuzzy programming method to obtain the 

priorities of the seven water conservancy projects, the results are shown in Table 
3.11 (Zhu and Xu 2013b): 

 
Table 3.11. The priorities of the seven projects by the hesitant fuzzy programming method 
and the eigenvector method 

 Reservoir 

project 

Irrigatio

n project 

Waterlog 

control 

project 

Flood control 

and prevention 

project 

Water supply 

project 

Hydro 

power 

project 

Water and soil 

conservation 

project 

Priorities  1w  2w  3w  4w  5w  6w  7w  

Hesitant fuzzy 

programming 

method 

0.1346 0.0646 0.0646 0.3918 0.2256 0.0475 0.0712 

Eigenvector 

method 

0.1302 0.0524 0.0524 0.3798 0.2669 0.0343 0.0843 
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In Table 3.11, the priorities of the projects are slightly different, each project gets 
a priority which represents the relative importance of the project. To compare the 

two methods, we define a solution preference relation, ( )ij n nW w ×= , where 

i
ij

j

w
w

w
=

 
are the ratios of the priorities. Assume a multiplicative preference 

relation ( )ij n nB b ×= , the Euclidean distance (Golany and Kress 1993) is utilized 

to measure the deviation degree between W  and B , defined as follows: 
 

 

2

, 1;

2
( , ) ( )

( 1)

n

ij ij
i j i j

d W B w b
n n = <

 
= − −  


         

     (3.110) 

 
The original crisp pairwise comparison judgments of the water conservancy 

projects shown in Table 3.11 can be constructed as a multiplicative preference 

relation ( ). .

7 7

proj proj
ijB b

×
= . According to Table 3.11, let ( )

7 7

EVM EVM
ijW w

×
=  and 

HFPMW =  ( )
7 7

HFPM
ijw

×  be the solution preference relations constructed by the 

ratios of priorities derived by the eigenvector method and the hesitant fuzzy 
programming method, respectively. By Eq.(3.110), we have ( )., 0.5249EVM projd W B = , 

( ).,HFPM projd W B
 

0.4841= . Obviously, ( ) ( ). ., ,HFPM proj EVM projd W B d W B< ,
 
it 

means that the hesitant fuzzy programming method gives a better approximation to 

the original preference relation .projB . Furthermore, according to Table 3.11, the 

ranking results of the seven water conservancy projects are the same by the two 

optimization methods, that is, 4 5 1 7 2 3 6w w w w w w w> > > > = > . Therefore, the 

hesitant fuzzy programming method can be considered as an alternative of the 
eigenvector method, and it performs better than the eigenvector method. 

As Zhang (2009) introduced, twenty-seven DMs (experts) are required to 
provide full pairwise comparison judgments at each level of hierarchy, and they 
should necessarily agree upon all the comparison judgments at each level so as to 
obtain crisp judgments. Some prioritization procedures should be used for the group 
to agree upon the judgments, such as consensus, voting, or aggregated methods 
Zhang (2009). Moreover, in order to get meaningful results by AHP, the 
consistency degree should be satisfactory at each judgment level. Thus, it appears to 
be a complex and difficult process to obtain a desired result for so many DMs and 
complicated hierarchy structure by the traditional AHP-GDM.  
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Assume that the twenty-seven DMs as a group, do not consider individuals, we 
can regard this as AHP-HGDM and use the hesitant fuzzy programming method to 
deal with the optimization problem. Since the twenty-seven DMs act as a group, the 
comparison judgments from the group can be constructed as a hesitant 
multiplicative preference relation directly without prioritization procedures. If the 
group is unwilling or unable to provide some comparison judgments, the hesitant 
fuzzy programming method can deal with this situation where there are missing 
judgments. The group also does not need to ensure the consensus degree of their 
judgments. Therefore, with no necessary prioritization procedures, full comparison 
judgments, and the satisfied consensus degree, this water conservancy problem is 
greatly simplified under AHP-HGDM. 

According to Zhang (2009)’s results, the total investment ratio of the Southeast 
Rivers and Southwest Rivers is less than 10%  both in short-term and 
medium-term (Fig. 3.5 (Zhang 2009)). For simplicity, we concentrate on the other 
seven major river basins in this paper.  

 

 
 
Fig. 3.5. The reasonable allocation of WCICC among river basins in China 

 
The resolution process of this problem is based on the four main steps of 

AHP-HGDM introduced in Subsection 3.6.1. Therefore, we give the following four 
steps for obtaining the reasonable allocation of WCICC among the seven major 
river basins in China (Zhu and Xu 2013b). 
 
Step 1. Let the reasonable allocation be the goal level, the seven kinds of projects as 
the criterion level and the seven major river basins as the scheme level, we have the 
hierarchy structure shown in Fig. 3.6 (Zhu and Xu 2013b):  
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The reasonable 
allocation 

Reservoir  Irrigation  
Flood control 

and prevention 
Waterlog 
control

Water 
supply Hydropower  

Water and soil 
conservation

Yangtse 
River

Yellow 
River

Haihe and 
luanhe Rivers 

Song and 
Liao Rivers

Inland 
River

Huaihe 
River

Zhujiang 
River

 
Fig. 3.6. The hierarchy structure  
 
Step 2. In order to compare with Zhang (2009)’s results, we retain original crisp 
pairwise comparison judgments with respect to each level of hierarchy, then add 
some other possible values to original judgments or omit some crisp judgments. 
These modified comparison judgments can be constructed as hesitant multiplicative 
preference relations or incomplete hesitant multiplicative preference relations, 
shown in Tables 3.12 and 3.13 (Zhu and Xu 2013b). 

 

Table 3.12. The modified pairwise comparison judgments of the water conservancy projects  

 Reservoir 
project 

Irrigation 
project 

Waterlog 
control 
project 

Flood 
control and 
prevention 

project 

Water 
supply 
project 

hydropower 
project 

water and 
soil 

conservation 
project 

Reservoir 
project 

 
{1} 

 
{2,3} 

 
{3} 

1 1
,

5 4
 
 
 

 
1

3
 
 
 

 
 

{4} 
 

{2} 

Irrigation 
project 

  
{1} 

 
{1} 

1

6
 
 
 

 
1

5
 
 
 

 
 

{2} 
1

2
 
 
 

 

Waterlog 
control 
project 

   
{1} 

1 1
,

7 6
 
 
 

 
 

{1/5} 
 
{1,2} 

- 

Flood control 
and 

prevention 
project 

    
{1} 

 
{2} 

 
{7,8} 

 
{5} 

Water supply 
project 

    {1} {5,6} - 

hydropower 
project 

     {1} 1

3
 
 
 

 

water and soil 
conservation 

project 

       
{1} 
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Table 3.13. The modified pairwise comparison judgments of the seven river basins with 
respect to certain project  

 

 Yangtse 

River 

Yellow 

River 

Haihe and 

Luanhe 

Rivers 

Song and 

Liao Rivers 

Inland  

Rivers 

Huaihe 

River 

Zhujiang 

River 

Reservoir project       

Yangtse River {1} {6} {8} {3,4} {5} {5,6} {5} 

Yellow River   

{1} 

 

- 
1

4
 
 
 

 1

2
 
 
 

 1 1
,

2 3
 
 
 

 1

2
 
 
 

 

Haihe and Luanhe 

Rivers 

   

{1} 
1

6
 
 
 

 1

4
 
 
 

 1 1
,

4 3
 
 
 

 1

3
 
 
 

 

Song and Liao 

Rivers 

   {1} {3} {3} {3,4} 

Inland Rivers     {1} - - 

Huaihe River      {1} {1} 

Zhujiang River       {1} 

Irrigation project       

Yangtse River  

{1} 
1 1 1

, ,
3 4 5
 
 
 

 1

3
 
 
 

 1
1,

2
 
 
 

 1

4
 
 
 

 1

3
 
 
 

 
 

{3,4} 

Yellow River  {1} {3} {4} {2} {3} {7,8} 

Haihe and Luanhe 

Rivers 

   

{1} 

 

{2} 
1

2
 
 
 

 
 

{1} 

 

{5} 

Song and Liao 

Rivers 

    

{1} 

 

- 
1

2
 
 
 

 
 

- 

Inland Rivers     {1} {2} {6} 

Huaihe River      {1} {5} 

Zhujiang River       {1} 

Waterlog control project      

Yangtse River {1} {7} {7} {3,4} {9} - {3} 

Yellow River   

{1} 

 

{1} 

-  

{2,3} 
1 1

,
6 5
 
 
 

 1

5
 
 
 

 

Haihe and Luanhe 

Rivers 

   

{1} 
1

5
 
 
 

 
 

{3} 
1

6
 
 
 

 1

5
 
 
 

 

Song and Liao 

Rivers 

    

{1} 

 

{7} 
1

2
 
 
 

 
 

- 

Inland Rivers      

{1} 

 

- 
1 1

,
7 8
 
 
 

 

Huaihe River      {1} {2,3} 

Zhujiang River       {1} 
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Table 3.13. (continued) 

Flood control and prevention project  

Yangtse River {1} {4,5,6} - {2,3} {9} {3,4} {3} 

Yellow River   

{1} 

 

{4} 
1

2
 
 
 

 
 

{6} 
1

2
 
 
 

 1 1
,

2 3
 
 
 

 

Haihe and Luanhe 

Rivers 

   

{1} 

 

- 

 

{3} 

 

- 
1

5
 
 
 

 

Song and Liao 

Rivers 

   {1} - {1,3,4} {1} 

Inland Rivers      

{1} 
1

7
 
 
 

 
 

- 

Huaihe River      {1} {1} 

Zhujiang River       {1} 

Water supply project  

Yangtse River  

{1} 
1 1 1

, ,
3 4 5
 
 
 

 1

6
 
 
 

 1

4
 
 
 

 1

4
 
 
 

 1

4
 
 
 

 
 

{1} 

Yellow River   

{1} 
1

2
 
 
 

 
 

- 

 

{2} 

 

{2} 

 

{4,5,6} 

Haihe and Luanhe 

Rivers 

  {1} {3} {3} {3,4} {6} 

Song and Liao 

Rivers 

   {1} - {1} {4} 

Inland Rivers     {1} {1} {4} 

Huaihe River      {1} - 

Zhujiang River       {1} 

Hydropower project  

Yangtse River {1} {6} {9} {5} {9} {7} {3} 

Yellow River   

{1} 

 

{4} 
1 1

,
2 3
 
 
 

 
 

{4} 

 

{2} 
1 1 1

, ,
3 4 5
 
 
 

 

Haihe and Luanhe 

Rivers 

   

{1} 
1

5
 
 
 

 
 

{1} 

 

{1/3} 
1 1

,
6 7
 
 
 

 

Song and Liao 

Rivers 

    

{1} 

 

{5,6,7} 

 

{3} 
1 1 1

, ,
2 3 5
 
 
 

 

Inland Rivers      

{1} 
1

3
 
 
 

 1

7
 
 
 

 

Huaihe River       

{1} 
1

5
 
 
 

 

Zhujiang River       {1} 
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Table 3.13. (continued) 

Water and soil conservation project  

Yangtse River  

{1} 
1 1 1 1

, , ,
2 3 4 5
 
 
 

 
 

{2,3,4} 

 

{4,5} 

 

{3,4} 

 

{4,5} 

 

{5,6,7} 

Yellow River  {1} {3} {6} {5} {5} {6} 

Haihe and Luanhe 

Rivers 

   

{1} 

 

{4} 
1

,3
2
 
 
 

 
 

{3} 
1 1

,
3 4
 
 
 

 

Song and Liao 

Rivers 

    

{1} 
1

2
 
 
 

 1

2
 
 
 

 
 

{1} 

Inland Rivers     {1} {1} {2} 

Huaihe River      {1} {2} 

Zhujiang River       {1} 

 
Step 3. By the hesitant fuzzy programming method, the final group solution of the 
seven projects, and the final group solutions of the seven major river basins with 
respect to the certain project can be obtained shown in Tables 3.14 and 3.15  
(Zhu and Xu 2013b), respectively. 

Table 3.14. The final group solution of the seven projects 

GCI  Reservoir 
project 

Irrigation 
project 

Waterlog 
control 
project 

Flood control 
and prevention 

project 

Water 
supply 
project 

Hydro 
power 
project 

water and soil 
conservation 

project 

0.9513 0.1217 0.0852 0.0568 0.3895 0.2191 0.0426 0.0852 

 
Table 3.15. The final group solutions of the major seven river basins with respect to certain 
project 

 Reservoir 

project 

Irrigation 

project 

Waterlog 

control 

project 

Flood 

control and 

prevention 

project 

Water 

supply 

project 

Hydro 

power 

project 

water and 

soil 

conservation 

project 

GCI  0.9381 0.9472 0.9393 0.9261 0.9485 0.9070 0.9384 

Yangtse River 0.4487 0.0938 0.2883  0.3399 0.0815 0.4590 0.2466 

Yellow River 0.0851 0.3343 0.0499  0.1034 0.2060 0.0920 0.3699 

Haihe and 

Luanhe Rivers 

0.0638 0.1290 0.0499  0.0443 0.3090 0.0462 0.1438 

Song and Liao 

Rivers 

0.1702 0.0909 0.1163  0.2069 0.1202 0.1104 0.0514 

Inland Rivers 0.0774 0.1935 0.0253  0.0296 0.1202 0.0407 0.0685 

Huaihe River 0.0774 0.1232 0.3540  0.1379 0.1202 0.0678 0.0685 

Zhujiang River 0.0774 0.0352 0.1163 0.1379 0.0429 0.1840 0.0514 
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Step 4. In the last step, the priorities of the seven major river basins are calculated, 
then the reasonable allocation of WCICC among different projects can be 
determined. We normalize the priorities obtained by the eigenvector method for the 
seven major river basins given by Zhang (2009), we can compare the results shown 
in Table 3.16. 

 
Table 3.16. The priorities of the major seven river basins  

 Yangtse 
River 

Yellow 
River 

Haihe 
and 

Luanhe 
Rivers 

Song 
and 
Liao 

Rivers 

Inland 
Rivers

Huaihe 
River 

Zhujiang 
River 

Priorities  1w  2w  
 3w  

 4w  5w  6w  7w  

Hesitant fuzzy 
programming 

method 

0.2698 0.1625 0.1208 0.1511 0.0728 0.1288 0.0944 

Eigenvector 
method 

0.2475 0.1550 0.1276 0.1474 0.0775 0.1389 0.1060 

 
 

From Table 3.16, we can see that the ranking results of the seven river basins 
according to the priorities are the same, that is, Yangtse River  Yellow 
River  Song and Liao Rivers  Huaihe River  Haihe and Luanhe 
Rivers  Zhujiang River  Inland Rivers. In the total WCICC, Yangtse River 
basin should be invested more than other rivers basins, its priorities are 26.98% and 
24.75% obtained by the hesitant fuzzy programming method and the eigenvector 
method, respectively, and the least investment should be allocated to the Inland 
Rivers. Although the ranking results of the river basins by the two optimization 
methods are the same, the priorities obtained by the eigenvector method reflect a 
compromise solution, while the hesitant fuzzy programming method results in a 
best solution. To compare the two solutions, we can use the standard deviation of 
priorities, since a smaller value of the standard deviation of priorities, a more 
compromise solution it should be. According to Table 3.16, we let  

 
T(0.2698,0.1625,0.1208,0.151,0.0728,0.1288,0.0944)HFPMw =  

 
T(0.2475,0.1550,0.1276,0.1474,0.0775,0.1389,0.1060)EVMw =  

 
be the two solutions of priority vector obtained by the hesitant fuzzy programming 
method and the eigenvector method, respectively. Then their standard deviations 
are  
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( )
7 2

1

1
0.0592

7
HFPM HFPM

HFPM i
i

w wσ
=

= − =    

 

( )
7 2

1

1
0.0493

7
EVM EVM

EVM i
i

w wσ
=

= − =  

 
where HFPMw  and EVMw  are the means of HFPMw  and EVMw , respectively. 

Obviously, we have EVM HFPMσ σ< , the solution obtained by the hesitant fuzzy 

programming method is a better one. 
The illustrative example of water conservancy in China with the comparison 

analysis between the hesitant fuzzy programming method and the eigenvector 
method does not pretend to be a comprehensive one. The main objective of this 
example is to show the application of AHP-HGDM in practice and the hesitant 
fuzzy programming method with desirable features. The preliminary results in this 
paper confirm that as an extension of the AHP-GDM, AHP-HGDM performs better 
than traditional methods. It can be considered as a new tool to deal with group 
decision making, and the hesitant fuzzy programming method is an effective and 
convenient prioritization method, which makes the resolution process of 
AHP-HGDM much easier. 
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Chapter 4  

Hesitant Fuzzy MADM Models 

Multi-attribute decision making (MADM), which addresses the problem of making 
an optimal choice that has the highest degree of satisfaction from a set of 
alternatives that are characterized in terms of their attributes, is a usual task in 
human activities. In classical MADM, the assessments of alternatives are precisely 
known (Dyer et al. 1992; Stewart 1992). However, because of the inherent 
vagueness of human preferences as well as the objects being fuzzy and uncertain, 
the attributes involved in decision making problems are not always expressed in 
real numbers, and some are better suited to be denoted by fuzzy values, such as 
interval values (Cao and Wu 2011; Yue 2011; Zhang and Liu 2010; Xu 2004b, 
2005c; Xu and Chen 2008d,e; Xu and Da 2004), fuzzy numbers (Xu and Chen 
2007), linguistic variables (Fan and Feng 2009; Parreiras et al. 2010; Yu et al. 2012; 
Xu 2004c, 2007d,e, 2009b,c), intuitionistic fuzzy numbers (IFNs) (Xu and Yager 
2006, 2008; Xu and Cai 2010b; Xu 2012), and hesitant fuzzy elements (HFEs) (Xu 
and Xia 2011b,c; Xia and Xu 2011a; Zhu et al. 2012a), just to mention a few. Since 
Bellman and Zadeh (1970) first proposed the basic model of fuzzy decision making 
based on the theory of fuzzy mathematics in 1970, fuzzy MADM has been 
receiving more and more attention. Many methods for MADM, such as the TOPSIS 
method (Technique for Order Preference by Similarity to Ideal Solution) 
(Jahanshahloo et al. 2006; Wang and Elhag 2006), the maximizing deviation 
method (Xu 2005d, 2010c; Wu and Chen 2007), the VIKOR (VlseKriterijumska 
Optimizacija I Kompromisno Resenje) method (Opricovic and Tzeng 2004, 2007), 
the PROMETHEE (Preference Ranking Organisation METHod for Enrichment 
Evaluations) method (Brans 1984), and the ELECTRE (ELimination Et Choix 
Traduisant la REalité) method (Roy 1996) have been extended to take different 
types of attribute values into account, such as interval values, linguistic variables, 
and IFNs. All of the above methods, however, have not yet been accommodated to 
fit the hesitant fuzzy assessments provided by the DMs. HFEs (Xu and Xia 2011b,c) 
(which can be seen as the basic elements of HFSs (Torra and Narukawa 2009, 2010) 
describes the situations that permit the membership of an element to a given set 
having a few different values, which is a useful means to describe and deal with 
uncertain information in the process of MADM. 

Xia and Xu (2011a) developed some aggregation operators for hesitant fuzzy 
information, and gave their application for solving the MADM problems under 
hesitant fuzzy environment. Xu and Xia (2011b) gave a detailed study on distance 
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and similarity measures for HFSs and proposed an approach based on distance 
measures for the MADM problems. Xia et al. (2013a) also proposed some other 
hesitant fuzzy aggregation techniques and applied them in group decision making. 
Yu et al. (2011) proposed a hesitant fuzzy Choquet integral operator and applied it 
in MADM under hesitant fuzzy environment in which the weight vector of 
attributes is exactly known. Wei (2012) also developed some prioritized 
aggregation operators for hesitant fuzzy information, and developed some models 
for hesitant fuzzy MADM problems in which the attributes are in different priority 
levels. Yu et al. (2012) proposed the generalized hesitant fuzzy Bonferroni mean to 
solve the MAGDM problems where the attributes are correlative under hesitant 
fuzzy environment. More recently, Qian et al. (2013) generalized the HFSs using 
intuitionistic fuzzy sets in group decision making framework. The generalized HFS 
is fit for the situations when the DMs have a hesitation among several possible 
memberships under uncertainty. Chen et al. (2013b) also generalized the concept of 
HFS to that of interval-valued hesitant fuzzy set (IVHFS) in which the 
membership degrees of an element to a given set are not exactly defined, but 
denoted by several possible interval values, and meanwhile developed an 
approach to group decision making based on interval-valued hesitant preference 
relations in order to consider the differences of opinions between individual DMs. 
Obviously, most of these papers put their emphasis on the extensions of the 
aggregation techniques in MADM under hesitant fuzzy scenarios. However, when 
using these techniques, the associated weighting vector is more or less determined 
subjectively and the decision information itself is not taken into consideration 
sufficiently; More importantly, a significant pitfall of the aforementioned methods 
is the need for the information about attribute weights being exactly known. To 
solve this issues, Xu and Zhang (2013) developed an approach based on the 
TOPSIS method and the maximizing deviation method for solving the MADM 
problems, in which the evaluation information provided by the DM is expressed in 
HFEs and the information about attribute weights is incomplete. There are two key 
issues being addressed in this approach. The first one is to establish an optimization 
model based on the maximizing deviation method, which can be used to determine 
the attribute weights. According to the idea of the TOPSIS method of Hwang and 
Yoon (1981), the second one is to calculate the relative closeness coefficient of each 
alternative to the hesitant positive-ideal solution, based on which the considered 
alternatives are ranked and then the most desirable one is selected. Chen et al. 
(2013c) developed a hesitant fuzzy ELECTRE I method and applied it to solve the 
MADM problem under hesitant fuzzy environments. The new method is formulated 
using the concepts of hesitant fuzzy concordance and hesitant fuzzy discordance 
which are based on the given scores and the deviation degrees, and employed to 
determine the preferable alternative. Motivated by the TOPSIS method, Liao and 
Xu (2013a) defined the satisfaction degree of the alternative, based on which 
several optimization models are derived to determinate the weights of attributes, 
and then they developed an interactive method based on some optimization models 
for the MADM problems with hesitant fuzzy information. 
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4.1   Hesitant Fuzzy MADM Based on TOPSIS with Incomplete 
Weight Information 

This section puts forward a framework for determining the attribute weights and the 
ranking orders for all the alternatives with incomplete weight information under 
hesitant fuzzy environment. 

A MADM problem can be expressed as a decision matrix whose elements 
indicate the evaluation information of all alternatives with respect to an attribute. 
We construct a hesitant fuzzy decision matrix, whose elements are HFEs, which are 
given due to the fact that the membership degree of the considered alternative 
satisfying a given attribute may originate from a doubt between a few different 
values.  

Consider a MADM problem where there is a discrete set of n  alternatives, 

1 2{ , ,..., }nA A A A= . Let 1 2{ , , , }nX x x x=   be the discussion universe 
containing the attributes. A HFS of the i th alternative iA  on X  is given by Xia 
and Xu (2011a): 

{ , ( )
ii j A jA x h x= < > }jx X∈                          (4.1) 

where { }( ) ( ), 0 1
i iA j A jh x h xγ γ γ= ∈ ≤ ≤ , 1, 2, ;i m=  1,2, ,j n=  . ( )

iY jh x  

indicates the possible membership degrees of the i th alternative iA  under the 

j th attribute jx , and it can be expressed as a HFE 
ijh . The hesitant fuzzy 

decision matrix H , can be written as: 
 

    

11 12 1

21 22 2

1 2

n

n

m m mn

h h h

h h h
H

h h h

 
 
 =
 
 
 




   


                           (4.2) 

 

Considering that the attributes have different importance degrees, the  
weight vector of all the attributes, given by the DMs, is defined by 

1 2( , , , )nw w w w Τ=  , where 0 1jw≤ ≤ , 1, 2,...,j n= , 
1

1
n

j
j

w
=

= , and jw  is 

the importance degree of each attribute. Due to the complexity and uncertainty of 
practical decision making problems and the inherent subjective nature of human 
thinking, the information about attribute weights is usually incomplete. For 
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convenience, let Δ  be a set of the known weight information (Park and Kim 1997; 
Kim and Ahn 1999; Kim and Han 1999; Park 2004; Xu and Chen 2007; Xu and Xia 
2012b; Xu 2007d,e), where Δ  can be constructed by the following forms, for 
i j≠ : 

Form 1. A weak ranking: { }i jw w≥ . 

Form 2. A strict ranking: { }( )0i j i iw w α α− ≥ > . 

Form 3. A ranking of differences: { }i j k lw w w w− ≥ − , for j k l≠ ≠ . 

Form 4. A ranking with multiples: { }( )0 1i i j iw wα α≥ ≤ ≤ . 

Form 5. An interval form: { }( )0 1i i i i i i iwα α ε α α ε≤ ≤ + ≤ ≤ + ≤ . 

 
The estimation of the attribute weights plays an important role in MADM. The 

maximizing deviation method was proposed by Wang (1998) to determine the 
attribute weights for solving the MADM problems with numerical information. 
According to Wang (1998), for a MADM problem, the attribute with a larger 
deviation value among alternatives should be assigned a larger weight, while the 
attribute with a small deviation value among alternatives should be signed a smaller 
weight. In other word, if the performance values of all the alternatives have small 
differences under an attribute, it shows that such an attribute plays a less important 
role in the priority procedure. On the contrary, if an attribute makes the performance 
values of all the alternatives have obvious differences, then this attribute plays a 
much important role in choosing the best alternative. So from the standpoint of 
ranking the alternatives, if one attribute has similar attribute values across 
alternatives, it should be assigned a small weight; Otherwise, the attribute which 
makes larger deviations should be evaluated a bigger weight, in spite of the degree 
of its own importance. Especially, if all available alternatives score equally with 
respect to a given attribute, then such an attribute will be judged unimportant by 
most of DMs. Wang (1998) suggested that zero weight should be assigned to the 
corresponding attribute. 

Xu and Zhang (2013) constructed an optimization model based on the 
maximizing deviation method to determine the optimal relative weights of 
attributes under hesitant fuzzy environment.  

For the attribute jx X∈ , the deviation of the alternative iA  to all the other 

alternatives can be expressed as: 
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then ( )jd w  represents the deviation value of all alternatives to other alternatives 

for the attribute 
jx X∈ . 

Based on the above analysis, we can construct a non-linear programming model 
to select the weight vector w  which maximizes all deviation values for all the 
attributes, as follows (Xu and Zhang 2013): 
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To solve the above model, we let 
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        (4.5) 

 
which indicates the Lagrange function of the constrained optimization problem 
(M-4.1), where ξ  is a real number, denoting the Lagrange multiplier variable. 

Then the partial derivatives of f  are computed as: 
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. 
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It follows from Eq.(4.6) that  
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Putting Eq.(4.8) into Eq.(4.7), we have  
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Obviously, 0ξ < , 
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    means the sum of deviations of all the 

alternatives with respect to all the attributes. 

Then combining Eqs.(4.8) and (4.9), we can get  
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For the sake of simplicity, let 
2( ) ( )

1 1 1

1n n l
q q

j ij kj
i k q

d h h
l

σ σ

= = =
= −  , 

1, 2, ,j m=  , and Eq.(4.10) can be rewritten as:  
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It can be verified from Eq.(4.11) easily that ( 1,2, , )jw j m=   are positive 

such that they satisfy the constrained conditions in the model (M-4.1) and the 
solution is unique. 

By normalizing ( 1, 2, , )jw j n=  , we make their sum into a unit, and get 

*

1

j
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j
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w
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=
 , 1, 2, ,j m=                         (4.12) 

 

However, there are actual situations that the information about the weight vector 

is not completely unknown but partially known. For these cases, based on the set of 

the known weight information, Δ , we construct the following constrained 

optimization model (Xu and Zhang 2013): 
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where Δ  is also a set of constraint conditions that the weight value jw  should 

satisfy according to the requirements in real situations. 
The model (M-4.2) is a linear programming model that can be executed using 

the MATLAB 7.4.0 mathematics software package. By solving this model, we get 

the optimal solution 1 2( , , , )nw w w w Τ=  , which can be used as the weight 

vector of attributes. 
In general, after obtaining the attribute weight values on basis of the maximizing 

deviation method, analogous to the literature (Xu 2010c; Wu and Chen 2007), we 
should utilize a certain kind of operator to aggregate the given decision information 
so as to get the overall preference value of each alternative, and then rank the 
alternatives and select the most desirable one(s). In the process of hesitant fuzzy 
information aggregation, however, it produces the loss of too much information due 
to the complexity of the aggregation process of hesitant fuzzy aggregation 
operators, which implies a lack of precision in the final results. Therefore, in order 
to overcome this disadvantage, Xu and Zhang (2013) extended the TOPSIS method 
to take hesitant fuzzy information into account and utilized the distance measures of 

. 
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HFEs to obtain the final ranking of the alternatives. TOPSIS, proposed by Hwang 
and Yoon (1981), is a kind of method to solve the MADM problems, which aims at 
choosing the alternative with the shortest distance from the positive ideal solution 
(PIS) and the farthest distance from the negative ideal solution (NIS), and is widely 
used for tackling the ranking problems in real situations. 

Under hesitant fuzzy environment, the hesitant fuzzy PIS, denoted by A+ , and 

the hesitant fuzzy NIS, denoted by A− , can be defined as follows: 
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                                (4.14) 

 
The separation between alternatives can be measured by Hamming distance or 

Euclidean distance. In order to measure the distances between HFEs, we adopt the 
hesitant fuzzy Euclidean distance proposed by Xu and Xia (2011c). The separation 

measures, id +  and id − , of each alternative from the hesitant fuzzy PIS A+  and 

the hesitant fuzzy NIS A− , respectively, are derived from
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The relative closeness coefficient of an alternative iA  with respect to the 

hesitant fuzzy PIS A+  is defined as the following formula: 
 

( ) i
i

i i

d
c A

d d

−

+ −=
+

,  1,2, ,i n=                         (4.17) 

 
where 0 ( ) 1ic A≤ ≤ , 1, 2, ,i n=  . Obviously, an alternative iA  is closer to 

the hesitant fuzzy PIS ( A+ ) and farther from the hesitant fuzzy NIS ( A− ) as 

( )ic A  approaches 1. Therefore, according to the closeness coefficient ( )ic A , we 

can determine the ranking orders of all alternatives and select the best one from a set 
of feasible alternatives.  

Based on the above models, Xu and Zhang (2013) developed a practical 
approach for solving the MADM problems, in which the information about attribute 
weights is incompletely known or completely unknown, and the attribute values 
take the form of hesitant fuzzy information. The schematic diagram of the proposed 
approach for MADM is provided in Fig. 4.1 (Xu and Zhang 2013). The approach 
involves the following steps: 

Step 1. For a MADM problem, we construct the decision matrix ( )ij n mH h ×= , 

where all the arguments ijh ( 1, 2,..., ; 1, 2,..., )i n j m= =  are HFEs, given by 

the DMs, for the alternative iA A∈  with respect to the attribute jx X∈ . 

Step 2. If the information about the attribute weights is completely unknown, then 
we can obtain the attribute weights by using Eq.(4.12); If the information about the 
attribute weights is partly known, then we solve the model (M-4.2) to obtain the 
attribute weights. 

Step 3. Utilize Eqs.(4.13) and (4.14) to determine the corresponding hesitant fuzzy 

PIS A+  and the hesitant fuzzy NIS A− . 

Step 4. Utilize Eqs.(4.15) and (4.16) to calculate the separation measures id +  and 

id −  of each alternative iA  from the hesitant fuzzy PIS A+  and the hesitant fuzzy 

NIS A− , respectively. 

Step 5. Utilize Eq.(4.17) to calculate the relative closeness coefficient ( )ic A  of 

each alternative iA  to the hesitant fuzzy PIS A+ . 

Step 6. Rank the alternatives iA ( 1, 2, ,i n=  ) according to the relative 

closeness coefficients ( )ic A ( 1, 2, ,i n=  ) to the hesitant fuzzy PIS A+  and 

then select the most desirable one(s). 
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Fig. 4.1. The schematic diagram of the proposed approach for MADM  
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In the following, we use an energy police selection problem (adopted from Xu 

and Xia (2011b); Kahraman and Kaya (2010)) to demonstrate the applicability and 

the implementation process of our approach under hesitant fuzzy environment.  
 

Example 4.1 (Xu and Zhang 2013). Energy is an indispensable factor for the 
social and economic development of societies. The correct energy policy affects 
economic development and environment, the most appropriate energy policy 
selection is very important. Suppose that there are five alternatives (energy 
projects) ( 1,2,3,4,5)iA i = , and four attributes: 1x : Technological; 2x : 
Environmental; 3x : Socio-political; 4x : Economic. Several DMs are invited to 
evaluate the performances of the five alternatives. For an alternative under an 
attribute, although all of the DMs provide their evaluation values, some of these 
values may be repeated. However, a value repeated more times does not indicate 
that it has more importance than other values repeated less times. To get a more 
reasonable result, it is better that the DMs give their evaluations anonymously. We 
only collect all of the possible values for an alternative under an attribute, and 
each value provided only means that it is a possible value, but its importance is 
unknown. Thus the times that the values repeated are unimportant, and it is 
reasonable to allow these values repeated many times appear only once. The HFE 
is just a tool to deal with such cases, and all possible evaluations for an alternative 
under the attributes can be considered as a HFE. The results evaluated by the DMs 
are contained in a hesitant fuzzy decision matrix, shown in Table 4.1 (Xu and 
Zhang 2013).  

 

Table 4.1. Hesitant fuzzy decision matrix 

 
1x  2x  3x  4x  

1A  {0.5,0.4,0.3} {0.9,0.8,0.7,0.1} {0.5,0.4,0.2} {0.9,0.6,0.5,0.3} 

2A  {0.5,0.3} {0.9,0.7,0.6,0.5,0.2} {0.8,0.6,0.5,0.1} {0.7,0.4,0.3} 

3A  {0.7,0.6} {0.9,0.6} {0.7,0.5,0.3} {0.6,0.4} 

4A  {0.8,0.7,0.4,0.3} {0.7,0.4,0.2} {0.8,0.1} {0.9,0.8,0.6} 

5A  {0.9,0.7,0.6,0.3,0.1} {0.8,0.7,0.6,0.4} {0.9,0.8,0.7} {0.9,0.7,0.6,0.3} 
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The hierarchical structure of this decision making problem is shown in Fig. 4.2 (Xu 
and Zhang 2013). 

x x x x  

Fig. 4.2. The energy policy selection hierarchical structure 

Obviously, the numbers of values in different HFEs of HFSs are different. In 
order to more accurately calculate the distance between two HFSs, we should 
extend the shorter one until both of them have the same length when we compare 
them. According to the regulations mentioned above, we consider that the DMs 
are pessimistic in Example 4.1, and change the hesitant fuzzy data by adding the 
minimal values as listed in Table 4.2 (Xu and Zhang 2013).  

Table 4.2. Hesitant fuzzy decision matrix 

 
1x  2x  3x  4x  

1A  {0.5,0.4,0.3,0.3,0.3} {0.9,0.8,0.7,0.1,0.1} {0.5,0.4,0.2,0.2,0.2} {0.9,0.6,0.5,0.3,0.3} 

2A {0.5,0.3,0.3,0.3,0.3} {0.9,0.7,0.6,0.5,0.2} {0.8,0.6,0.5,0.1,0.1} {0.7,0.4,0.3,0.3,0.3} 

3A {0.7,0.6,0.6,0.6,0.6} {0.9,0.6,0.6,0.6,0.6} {0.7,0.5,0.3,0.3,0.3} {0.6,0.4,0.4,0.4,0.4} 

4A {0.8,0.7,0.4,0.3,0.3} {0.7,0.4,0.2,0.2,0.2} {0.8,0.1,0.1,0.1,0.1} {0.9,0.8,0.6,0.6,0.6} 

5A {0.9,0.7,0.6,0.3,0.1} {0.8,0.7,0.6,0.4,0.4} {0.9,0.8,0.7,0.7,0.7} {0.9,0.7,0.6,0.3,0.3} 
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Then, we utilize the approach developed to get the most desirable alternative(s), 

which involves the following two cases: 
 

Case 1. Assume that the information about the attribute weights is completely 

unknown, we get the most desirable alternative(s) according to the following 

steps: 
 

Step 1. Utilize Eq.(4.12) to get the optimal weight vector: 

( )0.2341,0.2474,0.3181,0.2004w
Τ=  

Step 2. Utilize Eqs.(4.13) and (4.14) to determine the hesitant fuzzy PIS A+  and 

the hesitant fuzzy NIS A− , respectively: 

{ 1 2,{0.5, 0.3, 0.3, 0.3, 0.1} , ,{0.7, 0.4, 0.2, 0.1, 0.1} ,A x x− =  

}3 4,{0.5,0.1,0.1,0.1,0.1} , ,{0.6,0.4,0.3,0.3,0.3}x x  

{ 1 2,{0.9, 0.7, 0.6, 0.6, 0.6} , ,{0.9, 0.8, 0.7, 0.6, 0.6} ,A x x+ =  

}3 4,{0.9,0.8,0.7,0.7,0.7} , ,{0.5,0.1,0.1,0.1,0.1}x x  

Step 3. Utilize Eqs.(4.15) and (4.16) to calculate the separation measures id +  and 

id −  of each alternative iA  from the hesitant fuzzy PIS A+  and the hesitant fuzzy 
NIS A− , respectively: 

1 0.3555d + = , 1 0.1976d − = , 2 0.3277d + = , 2 0.2384d − = , 3 0.2418d + =  

3 0.2905d − = , 4 0.3865d + =  4 0.2040d − = , 5 0.1702d + = , 5 0.4023d − =  

Step 4. Utilize Eq.(4.17) to calculate the relative closeness ( )ic A  of each 
alternative iA  to the hesitant fuzzy PIS A+

: 

1( ) 0.3573c A = , 2( ) 0.4211c A = , 3( ) 0.5458c A =  

4( ) 0.3454c A = , 5( ) 0.7027c A =  

Step 5. Rank the alternatives iA ( 1,2,3,4,5i = ), according to the relative 

closeness coefficients ( )ic A ( 1,2,3,4,5i = ): 5 3 2 1 4A A A A A    , and 

thus the most desirable alternative is 5A . 
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Case 2. The information about the attribute weights is partly known and the 

known weight information is given as follows: 
 

{ T
1 2 1 2 3( , ,..., ) 0.15 0.2, 0.16 0.18, 0.3 0.35,mw w w w w w wΔ = = ≤ ≤ ≤ ≤ ≤ ≤

     
4

4
1

0.3 0.45, 0, 1,2,3, 4, 1j j
j

w w j w
=


≤ ≤ ≥ = = 


  

 
Step 1. Utilize the model (M-4.2) to construct the single-objective model as 

follows: 
 

1 2 3 4max ( ) 4.4467 4.6999 6.0431 3.8068

. . , 0, 1,2,3, 4j

d w w w w w

s t w w j

= + + +
 ∈ Δ ≥ =

 

 
By solving this model, we get the optimal weight vector:  

 

( )0.17,0.18,0.35,0.3w
Τ=  

 
Step 2. Utilize Eqs.(4.13) and (4.14) to determine the hesitant fuzzy PIS A+  and 

the hesitant fuzzy NIS A− , respectively: 
 

{ 1 2,{0.5, 0.3, 0.3, 0.3, 0.1} , ,{0.7, 0.4, 0.2, 0.1, 0.1} ,A x x− =  

}3 4,{0.5,0.1,0.1,0.1,0.1} , ,{0.6,0.4,0.3,0.3,0.3}x x  

 

{ 1 2,{0.9, 0.7, 0.6, 0.6, 0.6} , ,{0.9, 0.8, 0.7, 0.6, 0.6} ,A x x+ =  

}3 4,{0.9,0.8, 0.7,0.7,0.7} , ,{0.9,0.8, 0.6,0.6, 0.6}x x  

Step 3. Utilize Eqs.(4.15) and (4.16) to calculate the separation measures id +  and 

id −  of each alternative iA : 

1 0.3527d + = , 1 0.1910d − = , 2 0.3344d + = , 2 0.2313d − = , 3 0.2615d + =  

3 0.2645d − = , 4 0.3865d + = , 4 0.2200d − = , 5 0.1641d + = , 5 0.4088d − =  

. 
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Step 4. Utilize Eq.(4.17) to calculate the relative closeness coefficient ( )ic A  of 

each alternative iA  to the hesitant fuzzy PIS A+ : 
 

1( ) 0.3514c A = , 2( ) 0.4089c A = , 3( ) 0.5027c A =  

4( ) 0.3653c A = , 5( ) 0.7136c A =  

 
Step 5. Rank the alternatives iA ( 1, 2, ,5i =  ), according to the  
relative closeness coefficient ( )ic A ( 1, 2, ,5i =  ). Clearly, 

5 3 2 4 1A A A A A    , and thus the best alternative is 5A . 

More recently, Nan et al. (2008) proposed a fuzzy TOPSIS method for solving 
the MADM problems with intuitionistic fuzzy information. Since the HFEs’ 
envelopes are the IFNs, and at same time we consider that under hesitant  
fuzzy environment, there has no investigation similar to the approach introduced 
in this section, in the following, we will make a comparison with the intuitionistic 
fuzzy TOPSIS (IF-TOPSIS) method of Nan et al. (2008), which is the closest  
to our approach. Considering the HFSs’ envelopes, i.e., intuitionistic fuzzy data, 
and according to Definition 1.6, we can transform the hesitant fuzzy data  
of the energy police selection problem into the intuitionistic fuzzy data, listed  
in Table 4.3 (Xu and Zhang 2013). Moreover, since the IF-TOPSIS method needs 
to know the weight values in advance, hence we also assume the weight vector as 

( )0.2341,0.2474,0.3181,0.2004w
Τ= . 

Table 4.3. Intuitionistic fuzzy decision matrix 

 
1x  2x  3x  4x  

1A  <0.3,0.5> <0.1,0.1> <0.2,0.5> <0.3,0.1> 

2A  <0.3,0.5> <0.2,0.1> <0.1,0.2> <0.3,0.3> 

3A  <0.6,0.3> <0.6,0.1> <0.3,0.3> <0.4,0.4> 

4A  <0.3,0.2> <0.2,0.3> <0.1,0.2> <0.6,0.1> 

5A  <0.1,0.1> <0.4,0.2> <0.7,0.1> <0.3,0.1> 
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With the IF-TOPSIS method proposed by Nan et al. (2008), we first need to 
determine the intuitionistic fuzzy PIS A+  and the intuitionistic fuzzy NIS A− , 
respectively: 

 

{ }1 2 3 4,{0.1,0.1} , ,{0.1,0.1} , ,{0.1,0.2} , ,{0.3,0.1}A x x x x− =   

 

{ }1 2 3 4,{0.6,0.3} , ,{0.6,0.1} , ,{0.7,0.1} , ,{0.6,0.1}A x x x x+ =  

 
Then, according to the distance measure of IFNs: 

 

( )2 2 2

1

1
( , ) ( ) ( ) ( )

2

n

i k j ij kj ij kj ij kj
j

d A A w v vμ μ π π
=

= − + − + −       (4.18) 

we can calculate the separation measures 
id +  and 

id −  of each alternative iA  

from the intuitionistic fuzzy PIS A+  and the intuitionistic fuzzy NIS A− , 
respectively: 

 

1 0.3261d + = , 
1 0.2138d − = , 

2 0.3372d + = , 
2 0.1521d − = , 

3 0.1044d + =  

3 0.4209d − = , 
4 0.3715d + = , 

4 0.1035d − = , 
5 0.2335d + = , 

5 0.2615d − =  

 
Furthermore, we also calculate the relative closeness coefficient ( )ic A  of each 

alternative iA  to the intuitionistic fuzzy PIS A+  as follows: 
 

1( ) 0.3960c A = , 2( ) 0.3108c A = , 3( ) 0.7942c A =  

4( ) 0.2458c A = , 5( ) 0.5283c A =  

 
Finally, according to the relative closeness coefficients 

( )( ) 1, 2, ,ic A i m=  , we rank the alternatives ( )1,2,3,4,5iA i = : 

3 5 1 2 4A A A A A    . Thus the most desirable alternative is 3A . 

It is noticed that the obtained ranking order by Xu and Zhang (2013)’s approach 

is 5 3 2 1 4A A A A A    . Obviously, the ranking order of the alternatives 

obtained by Nan et al. (2008)’s method is remarkably different from that obtained 
by the approach proposed in this paper. The differences are the ranking orders 
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between 3A  and 5A , and between 1A  and 2A , i.e., 3 5A A  and 1A A  

for the former while 5 3A A  and 2 1A A  for the latter. Namely, the ranking 

orders of these pairs of alternatives are just converse. The main reason is that the our 
approach considers the hesitant fuzzy information which is represented by several 
possible values, not by a margin of error (as in HFEs), while if adopting Nan et al. 
(2008)’s method, it needs to transform HFEs into IFNs, which gives rise to a 
difference in the accuracy of data in the two types, it will have an effect on the final 
decision results. Thus it is not hard to see that Xu and Zhang (2013)’s approach has 
some desirable advantages over Nan et al. (2008)’s method as follows: 

 
(1) Xu and Zhang (2013)’s approach, by extending the TOPSIS method to take into 
account the hesitant fuzzy assessments which are well-suited to handle the 
ambiguity and impreciseness inherent in the MADM problems, does not need to 
transform HFEs into IFNs but directly deals with these problems, and thus obtains 
better final decision results. In particular, when we meet some situations where the 
information is represented by several possible values, our approach shows its great 
superiority in handling those decision making problems with hesitant fuzzy 
information. 

(2) Xu and Zhang (2013)’s approach utilizes the maximizing deviation method to 
objectively determine the weight values of attributes, which is more reasonable, 
while Nan et al. (2008)’s method needs the DM to provide the weight values in 
advance, which is subjective and sometime cannot yield the persuasive results.  

4.2   ELECTRE I Method for Hesitant Fuzzy MADM  

The ELECTRE method plays a significant role in the group of outranking. It was 
first set forth by Benayoun et al. (1966); Roy (1968), and referred as ELECTRE-I, 
which, along with its improvements, ELECTRE Iv and ELECTRE Is (Roy 1991; 
Roy and Skalka 1984), constitutes the so-called current version of the ELECTRE 
methods for choice problems. The approach is further developed as the 
ELECTRE-II, III and IV methods aiming at dealing with ranking problems, and as 
the ELECTRE-A and ELECTRE-TRI methods, devised to devote to sorting 
problems. See Figueira et al. (2005) for more details on these developments. 
Various forms of the ELECTRE methods have been widely applied to many fields 
(Figueira et al. 2005; Kaya and Kahraman 2011; Mousseau and Slowinski 1998), 
for example, project selection (Blondeau et al. 2002; Colson 2000), transportation 
(Roy et al. 1986), environment or water management (Lahdelma et al. 2002; Norese 
and Viale 2002), energy (Barda et al. 1990; Georgopoulou et al. 2003), agriculture 
and forest management (Duckstein and Gershon 1983; Srinivasa et al. 2000).   

Furthermore, many authors (Fernandez and Olmedo 2005; Hokkanen and 
Salminen 1994, 1997; Leyva and Fernandez 2003; Rogers et al. 2000; Salminen et 
al. 1998) have applied the ELECTRE method to the field of group decision making 
(Bana e Costa 1986; Cabrerizo et al. 2009; Dias and Clímaco 1999, 2000, 2005; 
Kaya and Kahraman 2011; Kim and Ahn 1999; Kim and Han 1999; Lahdelma et al. 
1998; Nazari-Shirkouhi et al. 2011). Dias and Clímaco (1999) computed 
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ELECTRE’s credibility indices under partial information corresponding to the case 
when the DMs are unsure which values each parameter should take, which may 
result from insufficient, imprecise or contradictory information, as well as  
from different preferences among a group of DMs. Leyva and Fernandez (2003) 
presented an extension of the ELECTRE III multi-attribute outranking 
methodology to assist a group of DMs with different value systems to achieve a 
consensus on a set of possible alternatives. Fernandez and Olmedo (2005) proposed 
an agent model based on ideas of concordance and discordance for group ranking 
problems. Kaya and Kahraman (2011) illustrated an environmental impact 
assessment methodology based on an integrated fuzzy AHP–ELECTRE approach 
in the context of urban industrial planning. In addition, the ELECTRE method has 
recently been employed (El Hanandeh and El-Zein 2010; Hatami-Marbini and 
Tavana 2011; Montazer et al. 2009; Rogers and Bruen 1998; Sevkli 2009; Shanian 
et al. 2008; Siskos et al. 1984; Wu and Chen 2011; Vahdani et al. 2010) to handle 
the case that the evaluation information of the decision making problems may be 
uncertain and fuzzy, which is caused by the limited knowledge of DMs and the 
fuzzy nature of the real world. For instance, Hatami-Marbini and Tavana (2011) 
proposed the extended ELECTRE I method to account for the uncertain, imprecise 
and linguistic assessments provided by a group of DMs and used the mean value in 
aggregating the opinions of all DMs. Wu and Chen (2011) utilized the approach to 
solve the MCDM problems in intuitionistic fuzzy  environments. Vahdani et al. 
(2010) applied it to assimilate the concepts of interval weights and data.  

When performing group decision making by the frequently used approaches, the 
opinions of the DMs for each attribute and alternative are first aggregated and only 
a set of average attributes can be obtained, which implies a valid common decision. 
Thus these aggregation methods do not reflect differences between the individual 
DMs. Bana e Costa (1986), Kim and Ahn (1999), Kim and Han (1999) corrected the 
average sum aggregation of the performances in the framework of additive value 
functions. Dias and Clímaco (2005) designed a decision support system aiming at 
not imposing an aggregated model from the individual ones, but to reflect to each 
member the consequences of his/her inputs. Specifically, they dealt with the 
aggregation of multi-attribute performances by means of an additive value function 
under imprecise information using VIP analysis. The ELECTRE TRI methods 
(Dias and Clímaco 2000) were also employed for groups with imprecise 
information on parameter values.  

The prominent features of the ELECTRE method include four binary relations, 
the preference modeling through outranking relations, and the concepts of 
concordance and discordance. 

 
Definition 4.1 (Figueira et al. 2010).  To compare two actions a  and b , binary 

relations are defined on the set X . For a pair ( , )a b X X∈ × , let 

(1) 1K  denotes the strict preference relation; and 1aK b  means that ‘‘ a  is 

strictly preferred to b ” ; 

(2) 2K  denotes the indifference relation, and 2aK b  means that ‘‘ a  is 

indifferent to b ” ; 
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(3) 3K  denotes the weak preference relation, and 3aK b  means that ‘‘ a  is 

weakly preferred to b , which expresses hesitation between the indifference 

( 2K ) and the preference ( 1K ) ; 

(4) 4K  denotes the incomparability relation, and aKb  means that ‘‘ a  is not 

comparable to b ”. It corresponds to an absence of clear and positive reasons 
that would justify any of the three preceding relations.  

 
Definition 4.2 (Figueira et al. 2010).  Modeling preference in the ELECTRE 
method is via the comprehensive binary outranking relation S , whose meaning is 
“at least as good as”; In general, 

1 2 3S K K K=   . Considering two actions 

( , )a b X X∈ × , four cases appear:  

(1) aSb  and not bSa , i.e., aPb ( a  is strictly preferred to b ). 
 
(2) bSa  and not aSb , i.e., bPa ( b  is strictly preferred to a ).  
 
(3) aSb  and bSa , i.e., aIb ( a  is indifferent to b ). 
 
(4) Not aSb  and not bSa , i.e., aKb ( a  is incomparable to b ). 

Definition 4.3 (Figueira et al. 2010).  All outranking based methods rely on the 
concepts of concordance and discordance which represent, in a certain sense, the 
reasons for and against an outranking situation: 

(1) The concordance concept: To validate an outranking aSb , a sufficient 
majority of criteria in favor of this assertion must occur. 

(2) The discordance concept: The assertion aSb  cannot be validated if a minority 
of criteria is strongly against this assertion. 
 

The ELECTRE method is composed of the construction and exploitation of one 
or several outranking relation(s) (Figueira et al. 2005). The construction is based on 
a comparison of each pair of actions on the attributers, through which concordance 
and discordance indices are obtained and they are further used to analyze the 
outranking relations among different alternatives.   

In the traditional ELECTRE methods, each attribute in different alternatives can 
be divided into two different subsets: concordance set and discordance set. The 

former is composed of all attributes for which iA  is preferred to jA , and the latter 

is the complementary subset. However, in the hesitant fuzzy environments, 
according to the concepts of scores and deviation degrees, we can compare different 
alternatives on the attributes and classify different types of hesitant fuzzy 
concordance (discordance) sets as the hesitant fuzzy concordance (discordance) set 
and the weak hesitant fuzzy concordance (discordance) set. A better alternative has 
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the higher score or the lower deviation degree in cases where the alternatives have 
the same score.  

As has been pointed out, HFEs can incorporate all possible opinions of the group 
members and thus provide intuitionistic descriptions on the differences among 
group members. In other words, when seeking a consensual solution in the process 
of group decision making, introducing HFEs can avoid aggregation (Torra and 
Narukawa 2009), that is, it does not need to force average preference on group 
members. Chen et al. (2013c) investigated the ELECTRE I method under hesitant 
fuzzy environments called hesitant fuzzy ELECTRE I (HF-ELECTRE I) method, 
which was primarily introduced to aid the process of group decision making. 
Moreover, in the method, they defined the concept of deviation function for HFEs 
to take the differences of opinions among group members into account.  

In this section, we extend the ELECTRE I method to develop a new method in 
order to solve the MCDM problems under hesitant fuzzy environments.    

As mentioned before, the set of all attributes is denoted as 1 2{ , , , }nX x x x=   

and a HFS iA  on X  is given by { }, ( )
ii j A j jA x h x x X= < > ∈ , where 

{ }( ) ( ), 0 1
i iA j A jh x h xγ γ γ= ∈ ≤ ≤

 
( 1,2, , ;i n=  1,2, ,j m=  ) indicating all possible 

membership degrees of the i th alternative iA  under the j th attribute jx , 

expressed by a HFE ijh . 

For each pair of the alternatives iA  and jA  ( , 1, 2, ,i j n=  , i j≠ ), the 

hesitant fuzzy concordance set 
ijcJ  of iA  and jA  is the sum of all those 

attributes where the performance of iA  is superior to jA . The hesitant fuzzy 

concordance set 
ijcJ  can be formulated as follows: 

   { }( ) ( ) ( ) ( )
ijc ik jk ik jkJ k s h s h and h hσ σ= ≥ <                (4.19) 

The weak hesitant fuzzy concordance set '
ijc

J  is defined by  

{ }' ( ) ( ) ( ) ( )
ij

ik jk ik jkc
J k s h s h and h hσ σ= ≥ ≥              (4.20) 

The main difference between 
ijcJ  and '

ijc
J  lies in the deviation functions. The 

lower deviation values reflect that the opinions of DMs have a higher consistency 

degree. So 
ijcJ  is more concordant than '

ijc
J . 

Similarly, the hesitant fuzzy discordance set 
ijdJ , which is composed of all 

attributes for which iA  is inferior to jA , can be formulated as follows: 

   { }( ) ( ) ( ) ( )
ijd ik jk ik jkJ k s h s h and h hσ σ= < ≥                (4.21) 
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If ( ) ( )ik jks h s h< and the deviation degree ( ) ( )ik jkh hσ σ< , then we 

define this circumstance as the weak hesitant fuzzy discordance set '
ijd

J , which is 

expressed by 

     { }' ( ) ( ) ( ) ( )
ij

ik jk ik jkd
J j s h s h and h hσ σ= < <            (4.22) 

Obviously, 
ijdJ  is more discordant than '

ijd
J . 

In this subsection, we construct the corresponding matrices for different types of 
the hesitant fuzzy concordance sets and the hesitant fuzzy discordance sets, and 
propose the hesitant fuzzy ELECTRE I (HF-ELECTRE I) method. The hesitant 
fuzzy concordance index is the ratio of the sum of the weights related to attributes in 
the hesitant fuzzy concordance sets to that of all attributes. It can be computed by 
the values of the hesitant fuzzy concordance set in the HF-ELECTRE I method.  

The concordance index ijc  of iA  and jA  in the HF-ELECTRE I method is 

defined as: 
     

'

'

'

'

1

cij cij

cij cij

C k C k
k J k J

ij C k C kn
k J k J

k
k

w w

c w w
w

ω ω

ω ω
∈ ∈

∈ ∈

=

× + ×

= = × + ×

 
 


     (4.23) 

where kw  is the weight of criterion and 
1

1
n

k
k

w
=

=  for the normalized weight 

vector of all attreibutes. Cω  and 'Cω  are respectively the weights of the hesitant 

fuzzy concordance sets and the weak hesitant fuzzy concordance sets depending on 

the attitudes of the DMs. The ijc  reflects the relative importance of iA  with 

respect to jA . Obviously, 0 1ijc≤ ≤ . A large value of ijc  indicates that the 

alternative kA  is superior to the alternative jA . We can thus construct the 

asymmetrical hesitant fuzzy concordance matrix C  using the obtained value of 

the indices ( , 1, 2, , ,ijc i j n=   )i j≠ , namely, 

1 1( 1) 1

1 ( 1)

1 ( 1)

j n n

i ij i n in

n nj n n

c c c

c c c cC

c c c

−

−

−

− 
 
 
 =
 
 
 − 

 
     
 

     
 

                    (4.24) 



400 4   Hesitant Fuzzy MADM Models 

 

Different from the hesitant fuzzy concordance index, the hesitant fuzzy 

discordance index is reflective of relative difference of iA  with respect to jA  in 

terms of discordance attributes. The discordance index is defined via: 
     

{ }
'

'

{1,2,..., }

max ( , ), ( , )

max ( , )

dij dij

k ik k jk k ik k jkD Dk J J

ij
k ik k jk

k n

d w h w h d w h w h

d
d w h w h

ω ω
∈

∈

× ×
=


      (4.25) 

     
where Dω  and 'Dω  denote the weights of the hesitant fuzzy discordance set and 

the weak discordance set respectively depending on the DMs’ attitudes, and 

( ),k ik k jkd w h w h  is the distance measure defined in Section 2.2.  

Hesitant fuzzy discordance matrix is established by the hesitant fuzzy 

discordance index for all pairwise comparisons of alternatives: 
     

1 1( 1) 1

1 ( 1)

1 ( 1)

j n n

i ij i n in

n nj n n

d d d

d d d dD

d d d

−

−

−

− 
 
 
 =
 
 
 − 

 
     
 

     
 

                   (4.26) 

     
As seen in Eqs.(4.23) and (4.24), the elements of C  differ substantially from 

those of D , making the two matrices have complementary relationship, that is, the 
matrix C  represents the weights resulted from hesitant fuzzy concordance 

indices, whereas the asymmetrical matrix D  reflects the relative difference of 

j ijw h  for all hesitant fuzzy discordance indices. Note that discordance matrix 

reflects the limited compensation between alternatives, that is, when the difference 
of two alternatives on an attribute arrives at a certain extent, compensation of the 
loss on a given attribute by a gain on another one may not be acceptable for the DMs 
(Figueira et al. 2005). Because of this reason discordance matrix is established 
differently from the case of the establishment of concordance matrix.  

The hesitant fuzzy concordance dominance matrix can be calculated according 
to the cut-level of hesitant fuzzy concordance indices. If the hesitant fuzzy 

concordance index ijc  of iA  relative to jA  is over a minimum level, then the 

superiority degree of iA  to jA  increases. The hesitant fuzzy concordance level 

can be defined as the average of all hesitant fuzzy concordance indices in the 
following manner: 
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1 1, ( 1)

n n
ij

i j j i

c
c

n n= = ≠

=
−                           (4.27) 

     
Based on the concordance level, the concordance dominance matrix F  (i.e., a 

Boolean matrix) can be expressed as:   
     

1 1( 1) 1

1 ( 1)

1 ( 1)

j n n

i ij i n in

n nj n n

f f f

f f f fF

f f f

−

−

−

− 
 
 
 =
 
 
 − 

 
     
 

     
 

                   (4.28) 

     
whose elements satisfy  

     

1,

0,
ij ij

ij ij

f if c c

f if c c

= ≥
 = <

                         (4.29) 

     
where each element 1 in the matrix F  indicates that an alternative is preferable to 

the other one. 
Likewise, the elements of the hesitant fuzzy discordance matrix are also 

measured by the discordance level d , which can be defined as the average of the 
elements in the hesitant fuzzy discordance matrix: 

     

1 1, ( 1)

n n
ij

i j j i

d
d

n n= = ≠

=
−                             (4.30) 

     
Then, based on the discordance level, the discordance dominance matrix Q  can 

be constructed as: 
     

1 1( 1) 1

1 ( 1)

1 ( 1)

j n n

i ij i n in

n nj n n

q q q

q q q qQ

q q q

−

−

−

− 
 
 
 =
 
 
 − 

 
     
 

     
 

                  (4.31) 

where  
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1,

0,
ij ij

ij ij

q if d d

q if d d

 = ≤
 = >

                        (4.32) 

     
The elements of the matrix Q  measure the degree of the discordance. Hence, 

the discordant statement would be no longer valid if the element value ijd d≤ . 

That is to say, the elements of the matrix Q , whose values are 1, show the 

dominant relations among the alternatives. 
Then the aggregation dominance matrix P  is constructed from the elements of 

the matrix F  and the matrix Q  through the following formula: 

                             P F Q= ⊗                              (4.33) 

where each element ijp  of P  is derived with 

ij ij ijp f q=                              (4.34) 

     
Finally, we exploit the outranking relations aiming at elaborating 

recommendations from the results obtained in previous construction of the 
outranking relations (Roy and Skalka 1984).  

If 1ijp = , then iA  is strictly preferred to jA  or ihA  is weakly preferred to 

jA ; If 1ijp =  and 1jip = , then iA  is indifferent to jA ; If 0ijp =  and 

0jip = , then iA  is incomparable to jA . 

We summarize the proposed HF-ELECTRE I method in the following steps and 
also display it in Fig. 4.3 (Chen et al. 2013c). 

      
Step 1.  Construct the hesitant fuzzy decision matrix. A group of DMs determine 
the relevant attributes of the potential alternatives and give the evaluation 
information in the form of HFEs of the alternative with respect to the attributes. 

They also determine the importance vector w = 1 2( , , , )nw w w Τ  for the 

relevant attributes, and the relative weight vector ( )T

', , ,C C D Dω ω ω ω ω ′=  of 

different types of the hesitant fuzzy concordance sets and the hesitant fuzzy 
discordance sets. 

     
Step 2.  Calculate the score function and the deviation function of each evaluation 
information of alternatives on the attributes in the form of HFEs according to 
Definition 1.2 and Eq.(1.2). 
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Step 3. Construct the hesitant fuzzy concordance sets and the hesitant fuzzy weak 

concordance sets using Eqs.(4.19) and (4.20). 
     
Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy 

discordance sets using Eqs.(4.21) and (4.22). 
     

Step 5. Calculate the hesitant fuzzy concordance indexes using Eq.(4.23) and 

obtain the hesitant fuzzy concordance matrix using Eq.(4.24). 
     

Step 6. Calculate the hesitant fuzzy discordance indexes using Eq.(4.24) and obtain 

the hesitant fuzzy discordance matrix using Eq.(4.25). 
     

Step 7. Identify the concordance dominance matrix using Eqs.(4.26)-(4.27). 
     

Step 8. Identify the discordance dominance matrix using Eqs.(4.28)-(4.30). 
     

Step 9. Construct the aggregation dominance matrix using Eqs.(4.31)-(4.32). 
     

Step 10. Draw a decision graph and choose the preferable alternative. 
     

Step 11. End. 
     

Now we use a numerical example to illustrate the details of the proposed 
HF-ELECTRE I method. 

     

Example 4.2 (Chen et al. 2013c). The enterprise’s board of directors, which 
includes five members, is to plan the development of large projects (strategy 

initiatives) for the following five years. Four possible projects ( 1, 2,3,4)iA i =  

have been marked. It is necessary to compare these projects to select the most 
important of them as well as order them from the point of view of their importance, 
taking into account four attributes suggested by the balanced scorecard 
methodology (Kaplan and Norton 1996) (it should be noted that all of them are of 
the maximization type): (1) x1: Financial perspective; (2) x2: The customer 
satisfaction; (3) x3: Internal business process perspective; (4) x4: Learning and 
growth perspective. 

In order to avoid psychic contagion, the DM are required to provide their 
preferences in anonymity. Suppose that the weight vector of the attributes is 

(0.2,0.3,0.15,0.35)w Τ= , and the hesitant fuzzy decision matrix is presented in 

the form of HFEs in Table 4.4 (Chen et al. 2013c). 
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Fig. 4.3. The procedure of the HF-ELECTRE I method 

     

Step 1 
Construct the hesitant fuzzy decision matrix 

Step 2 
Calculate the score function and deviation function 

Step 3 
Construct the hesitant fuzzy concordance sets and the weak 

hesitant fuzzy concordance sets 

Step 4 
Construct the hesitant fuzzy discordance sets and the weak 

discordance sets 

Step 5 
Calculate the hesitant fuzzy concordance indexes and obtain the 

hesitant fuzzy concordance matrix 

Step 6 
Calculate the hesitant fuzzy discordance indexes and obtain the 

hesitant fuzzy discordance matrix 

Step 7 
Identify the concordance dominance matrix 

Step 8 
Identify the discordance dominance matrix 

Step 9 
Construct the aggregation dominance matrix 

Step 10 
Draw a decision graph and choose the preferable alternative 
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Table 4.4. Hesitant fuzzy decision matrix for Example 4.2 

 
1x  2x  3x  4x  

1A  {0.2,0.4,0.7} {0.2,0.6,0.8} {0.2,0.3,0.6,0.7,0.9} {0.3,0.4,0.5,0.7,0.8} 

2A  {0.2,0.4,0.7,0.9} {0.1,0.2,0.4,0.5} {0.3,0.4,0.6,0.9} {0.5,0.6,0.8,0.9} 

3A  {0.3,0.5,0.6,0.7} {0.2,0.4,0.5,0.6} {0.3,0.5,0.7,0.8} {0.2,0.5,0.6,0.7} 

4A  {0.3,0.5,0.6} {0.2,0.4} {0.5,0.6,0.7} {0.8,0.9} 

     
     

Step 1. The hesitant fuzzy decision matrix and the weight vector of the attributes 

have been given above. The DMs also give the relative weights of the hesitant fuzzy 

concordance sets (weak hesitant fuzzy concordance sets) and the hesitant fuzzy 

discordance sets (weak discordance sets) respectively as follows: 

( )
T

T 2 2
, , , 1, ,1,

3 3C C D Dω ω ω ω ω′ ′
 = =  
 

 

Step 2. Calculate the score and the deviation degree of each evaluation information 

of alternatives on the attributes in the form of HFEs according to Definition 1.2 and 

Eq.(1.2) represented in Tables 4.5-4.6 (Chen et al. 2013c): 

Table 4.5. Scores 

 
1x  2x  3x  4x  

1A  0.4333 0.5333 0.54 0.54 

2A  0.55 0.3 0.55 0.7 

3A  0.525 0.425 0.575 0.5 

4A  0.4667 0.3 0.6 0.85 
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Table 4.6. Deviation degrees  

 
1x  2x  3x  4x  

1A  0.2055 0.2494 0.2577 0.1855 

2A  0.2693 0.1581 0.2291 0.1581 

3A  0.1479 0.1479 0.1920 0.1871 

4A  0.1247 0.1 0.0816 0.05 

 

The data in Tables 4.5 and 4.6 are obtained from the data of Table 4.4. For 

example,  
     

21

0.2 0.4 0.7 0.9
( ) 0.55

4
s h

+ + += =  

( )
1

2
2 2 2 2

21

1
( ) (0.2 0.55) (0.4 0.55) (0.7 0.55) (0.9 0.55) 0.2693

4
hσ  = − + − + − + − = 

 
 

     
Step 3. Construct the hesitant fuzzy concordance sets and the weak hesitant fuzzy 

concordance sets: 

{4} {2} {2} {2}

{3,4} {4} {1} {1} {1,2}
,

{1,3} {2,3} {1,2}

{1,3, 4} {2,3,4} {3, 4}

C CJ J ′

− − − −   
   − − −   = =
   − − − − −
   − − − − −   

 

For example, since  
     

14 34( ) 0.54 ( ) 0.5s h s h= > = , 14 34( ) 0.1855 ( ) 0.1871h hσ σ= < =  
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then 
13

{4}cJ = . Since    

     

12 32( ) 0.5333 ( ) 0.425s h s h= > =
 

and  

12 32( ) 0.2494 ( ) 0.1479h hσ σ= > =  

then '
13

{2}
c

J = . 

     
Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy 

discordance sets: 
     

3,4 1,3 1,3,4 1

2,3 3, 4 2
,

4 4 3, 4 2 1

2 1 1,2

D DJ J ′

− − − −   
   − − − − −   = =
   − − −
   − − − − −   

 

     
For example, since  

     

13 33( ) 0.54 ( ) 0.575s h s h= < = , 13 33( ) 0.2577 ( ) 0.1920h hσ σ= > =   

11 31( ) 0.4333 ( ) 0.525s h s h= < = , 11 31( ) 0.2055 ( ) 0.1479h hσ σ= > =  

then 
13

{1,3}dJ = .   

     
Step 5. Calculate the hesitant fuzzy concordance indexes and the hesitant fuzzy 

concordance matrix: 

 

( )
4 4

0.2 0.55 0.2

0.6333 0.4833 0.3333

0.35 0.45 0.3333

0.7 0.8 0.5

ijC c
×

− 
 − = =
 −
 − 
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For example, 13 4 2

2
1 0.35 0.3 0.55

3C Cc w wω ω ′= × + × = × + × = . 

     
Step 6.  Calculate the hesitant fuzzy discordance indexes and the hesitant fuzzy 

discordance matrix: 
     

( )
4 4

0.7778 0.3429 1

0.6667 0.5357 1

0.6667 1 1

0.3361 0.3265 0.1143

ijD d
×

− 
 − = =
 −
 − 

 

     
For instance, 

     

( ) ( ){ }
( )

'31 31

3 1 3 1

31

3 1
{1,2,3,4}

max , , ,

max ,

d d

D j j j j D j j j j
j J J

j j j j
j

d w h w h d w h w h

d
d w h w h

ω ω ′∈

∈

× ×
=


 

( ) ( )4 34 4 14 2 32 2 12

2
max 1 , , ,

3
0.0525

d w h w h d w h w h × × 
 =  

     

2
max 1 0.028, 0.0525

3
0.0525

 × × 
 = 0.035

0.6667
0.0525

= =  

     
where 

     

( ) ( )1 31 1 11

1
, 0.2 0.2 0.3 0.4 0.5 0.7 0.6 0.7 0.7

4
d w h w h = × × − + − + − + −  

0.015=  
     

( )2 32 2 12, 0.0525,d w h w h =  3 33 3 13( , ) 0.018d w h w h =  

     

4 34 4 14( , ) 0.028d w h w h =  
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Step 7. Calculate the hesitant fuzzy concordance level and identify the concordance 

dominance matrix, respectively: 
     

4 4

1 1,

0.4611
4(4 1)

ij

i j j i

c
c

= = ≠

= =
−  , 

0 1 0

1 1 0

0 0 0

1 1 1

F

− 
 − =
 −
 − 

 

     
Step 8. Calculate the hesitant fuzzy discordance level and identify the discordance 

dominance matrix, respectively: 

4 4

1 1,

0.6472
4(4 1)

ij

i j j i

d
d

= = ≠

= =
−  , 

0 1 0

0 1 0

0 0 0

1 1 1

Q

− 
 − =
 −
 − 

 

Step 9.  Construct the aggregation dominance matrix: 
     

0 1 0

0 1 0

0 0 0

1 1 1

P F Q

− 
 − = ⊗ =
 −
 − 

 

Step 10. As it can be seen from the aggregation dominance matrix, 1A  is preferred 

to 3A , 2A  is preferred to 3A  and 4A  is preferred to 1A , 2A  and 3A . Hence, 

4A  is the best alternative. The results are depicted in Fig. 4.4 (Chen et al. 2013c). 

 

Fig. 4.4. Decision graph of Example 4.2 
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The numerical example used here was also considered by Xia and Xu (2011a), 
who suggested the aggregation operators to fuse the hesitant fuzzy information and 
made the ranking of projects also by carrying out score functions for the same 
numerical example as ours. We find that both the average aggregation operators and 
the HF-ELECTRE I method give a consistent result, which clearly illustrates the 
validity of our proposed approach. These two proposed approaches are 
complementary when applied to solve different types of the MCDM problems. 
When the number of attributes in a MCDM problem is not larger than 4, the 
aggregation operator based approach is a suitable tool because of the simple solving 
steps. However, when the number of attributes exceeds 4 for hesitant fuzzy 
information, which often appears in some actual MCDM problems, the approach 
might encounter a barrier in applications because of the need for tremendous 
computation. For such cases, the proposed HF-ELECTRE I method is particularly 
useful, which is logically simple and demands less computational efforts. In what 
follows, we shall illustrate its application for the selection of investments where the 
number of criteria arrives at 6.  

     
Example 4.3. (Chen et al. 2013c)  Assume that an enterprise wants to invest 
money in another country (adapted from Merigó and Casanovas (2011b)). A group 
composing of four DMs in the enterprise considers five possible investments: (1) 

1A : Invest in the Asian market; (2) 2A : Invest in the South American market; (3) 

3A : Invest in the African market; (4) 4A : Invest in the three continents; (5) 5A : 

Do not invest in any continent. 
     

Table 4.7. Hesitant fuzzy decision matrix for Example 4.3 

 
1A  2A  3A  4A  5A  

1x  {0.5,0.6,0.7} {0,2,0.3,0.6,0.7} {0.3,0.4,0.6} {0.2,0.3,0,6} {0.4,0.5,0.6,0.7} 

2x  {0.4,0.6,0.7,0.9} {0.5,0.6,0.8} {0.7,0.8} {0.3,0.4,0.6,0.7} {0.7,0.9} 

3x  {0.3,0.6,0.8,0.9} {0.2,0.4,0.6} {0.3,0.6,0.7,0.9} {0.2,0.4,0.5,0.6} {0.5,0.7,0.8,0.9} 

4x  {0.4,0.5,0.6,0.8} {0.3,0.6,0.7,0.8} {0.2,0.3,0.5,0.6} {0.1,0.3,0.4} {0.3,0.5,0.6} 

5x  {0.2,0.5,0.6,0.7} {0.3,0.6,0.8} {0.3,0.4,0.7} {0.2,0.3,0.7} {0.4,0.5} 

6x  {0.2,0.3,0.4,0.6} {0.1,0.4} {0.4,0.5,0.7} {0.2,0.5,0.6} {0.2,0.3,0.7} 
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When analyzing the investments, the DMs have considered the following general 

characteristics: (1) 1x : Risks of the investment; (2) 2x : Benefits in the short term; 

(3) 3x : Benefits in the midterm; (4) 4x : Benefits in the long term; (5) 5x : 

Difficulty of the investment; (6) 6x : Other aspects. After a careful analysis of these 

characteristics, the DMs have given the following information in the form of HFEs 
shown in Table 4.7 (Chen et al. 2013c).  

Suppose that the weight vector of the attributes is 

( )0.25,0.2,0.15,0.1,0.2,0.1w
Τ= , the DMs have also given the relative weights  

of the hesitant fuzzy concordance (weak hesitant fuzzy concordance) sets  
and the hesitant fuzzy discordance (weak discordance) sets as 

T
T 3 3

( , , , ) 1, ,1,
4 4C C D Dω ω ω ω ω′ ′

 = =  
 

. Similar to the solving procedure used 

in the above numerical example, we obtain the aggregation dominance matrix: 
 

1 0 1 0

0 0 1 0

0 0 1 0

0 0 0 0

0 1 0 1

P F Q

− 
 − 
 = ⊗ = −
 − 
 − 

 

and a decision graph is constructed in Fig. 4.5 (Chen et al. 2013c).  
 
 

 
     

Fig.4.5. Decision graph of Example 4.3 
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We can see from the graph that three preference relations are obtained. That is: 

(1) 1 2 4A A A  ; (2) 5 2 4A A A  ; (3) 3 4A A . In contrast, if adopting the 

hesitant fuzzy average operators to aggregate the present hesitant information, the 
amount of data is extremely huge. For example, the number of HFE  

elements after aggregating 1A  reaches 53 4 3072× = . If aggregating all 

( 1, 2, 3, 4, 5)iA i = , then the corresponding number of computed data is 6677. 

The number will grow rapidly with increasing the number of alternatives and 
attributes. In our HF-ELECTR I method, the value for the number of calculation is 
462. To determine the trends of the computation complexity for the two methods, 
we generate a great number of n n×  hesitant fuzzy decision matrices 

H = ( )ij n n
h

×
 (as an example, here we take the number of values for each ijh  to 

be 4) by the Matlab optimization toolbox. The calculation times for the 
HF-ELECTRE I method and the aggregation operator methods are respective 

3 21
(5 9 10 4)

2
n n n+ − +  and (4 1)nn + . To be more clear, we choose the cases of 

n =4, 5, 10, 15, 20 to demonstrate the trends of the computation complexity with 
increasing n  for the two methods. The results are given in Table 4.8 (Chen et al. 
2013c). 

     

Table 4.8. Calculation times for the HF-ELECTRE I method and the aggregation operator 
method   

Methods 4n = 5n = 10n =  15n =  20n =  

HF-ELECTRE I method 214 402 2902 9377 21702 

Aggregation operator method 1028 5125 1.05 710×  1.61 1010×  2.19 1310×  

 
In Example 4.3, only four alternatives are considered. To check possible 

influence arising from a change in the number of alternatives, we compare the 
outranking relation for different number of alternatives (i.e. 4, 5, 6n =  and 7) under 

the same attributes. For this purpose, we perform a calculation with the Matlab 
Optimization Toolbox based on the HF-ELECTRE I method:  

 
(1) 5n = . We use the same calculation procedure as that in Example 4.3:    
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Step 1. Give the hesitant fuzzy decision matrix for the case of 5n =  (Table 4.9  

(Chen et al. 2013c)). Note that the former four alternatives are the same as those in 

Table 4.4 which corresponds to 4n = .   

Table 4.9. Hesitant fuzzy decision matrix for 5n =  

 
1x  2x  3x  4x  

1A  {0.2,0.4,0.7} {0.2,0.6,0.8} {0.2,0.3,0.6,0.7,0.9} {0.3,0.4,0.5,0.7,0.8} 

2A  {0.2,0.4,0.7,0.9} {0.1,0.2,0.4,0.5} {0.3,0.4,0.6,0.9} {0.5,0.6,0.8,0.9} 

3A  {0.3,0.5,0.6,0.7} {0.2,0.4,0.5,0.6} {0.3,0.5,0.7,0.8} {0.2,0.5,0.6,0.7} 

4A  {0.3,0.5,0.6} {0.2,0.4} {0.5,0.6,0.7} {0.8,0.9} 

5A  {0.4,0.6,0.7,0.9} {0.3,0.4,0.6} {0.3,0.4,0.5,0.8} {0.6,0.7,0.9} 

     
     

Step 2. Calculate the scores and the deviation degrees of evaluation information  

of the alternative 5A  on the criteria in the form of HFEs listed in Table 4.10  

(Chen et al. 2013c).  

Table 4.10. Score values and deviation values of 5A  

5A  1x  2x  3x  4x  

Scores 0.65 0.4333 0.5 0.7333 

deviation degrees 0.1803 0.1247 0.1871 0.1247 

 
Note that for the former four alternatives (i.e. 1A , 2A , 3A , 4A ), their scores 

and deviations of evaluation information are the same as those in Example 4.3, and 
thus, they are not repeated in Table 4.10.  
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Step 3.  Construct the hesitant fuzzy concordance sets and the weak hesitant fuzzy 

concordance sets: 
     

{4}

{3,4} {4}

{1,3} {2,3}

{1,3, 4} {2,3,4} {3,4} {3, 4}

{1,4} {1, 2, 4} {2, 4}

CJ

− − − − 
 − − − 
 = − − −
 − 
 − − 

 

{2} {2} {2} {2,3}

{1} {1} {1, 2} {3}

{1,2} {3}

1 {1, 2}

CJ ′

− 
 − 
 = − − −
 − − − − − 
 − − − 

 

     
Step 4. Construct the hesitant fuzzy discordance sets and the weak hesitant fuzzy 

discordance sets: 
     

{3, 4} {1,3} {1,3,4} {1,4}

{2,3} {3, 4} {1,2,4}

{4} {4} {3, 4} {2, 4}

{3, 4}

DJ

− 
 − − 
 = −
 − − − − − 
 − − − − 

 

{1}

{2}

{2} {1} {1}

{2} {1} {1, 2} {1,2}

{2,3} {3} {3}

DJ ′

− − − − 
 − − − − 
 = − −
 − 
 − − 

 

     
Step 5. Calculate the hesitant fuzzy concordance indices and the hesitant fuzzy 

concordance matrix: 
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( )
5 5

0.2 0.55 0.2 0.3

0.6333 0.4833 0.3333 0.1

0.35 0.45 0.3333 0.1

0.7 0.8 0.5 0.5

0.55 0.85 0.7833 0.3333

ijC c
×

− 
 − 
 = = −
 − 
 − 

 

     
Step 6. Calculate the hesitant fuzzy discordance indices and the hesitant fuzzy 
discordance matrix: 

     

( )
5 5

0.7778 0.3429 1 1

0.6667 0.5357 1 1

0.6667 1 1 1

0.3361 0.3265 0.1143 0.4285

0.3663 0.0952 0.0779 1

ijD d
×

− 
 − 
 = = −
 − 
 − 

 

     
As seen from Step 3 to Step 6, adding the alternative 5A  does not change the 

hesitant fuzzy concordance (discordance) sets, the weak hesitant fuzzy concordance 
(discordance) sets, the hesitant fuzzy concordance (discordance) indices, the 
hesitant fuzzy concordance (discordance) matrix of the former four alternatives. Its 
role is to add the last column and the last line of the resulting corresponding 
matrices. Similar situations also appear when the number of the alternatives is  6n=  
and 7n= .  

     
Step 7. Calculate the hesitant fuzzy concordance level and identify the concordance 
dominance matrix, respectively: 

     

5 5

1 1,

0.4525
( 1)

ij

i j j i

c
c

n n= = ≠

= =
−  , 

0 1 0 0

1 1 0 0

0 0 0 0

1 1 1 1

1 1 1 0

F

− 
 − 
 = −
 − 
 − 

 

     
Step 8. Calculate the hesitant fuzzy discordance level and identify the discordance 
dominance matrix, respectively: 
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5 5

1 1,

0.6367
5(5 1)

ij

i j j i

d
d

= = ≠

= =
−  , 

0 1 0 0

0 1 0 0

0 0 0 0

1 1 1 1

1 1 1 0

Q

− 
 − 
 = −
 − 
 − 

 

     
Step 9. Construct the aggregation dominance matrix: 

     

0 1 0 0

0 1 0 0

0 0 0 0

1 1 1 1

1 1 1 0

P F Q

− 
 − 
 = ⊗ = −
 − 
 − 

 

     
Step 10. As it can be seen from the aggregation dominance matrix that 1A  is 

preferred to 3A ; 2A  is preferred to 3A ; 4A  is preferred to 1A  2A , 3A  and 

5A ; 5A  is preferred to 1A , 2A  and 3A . The results are depicted in Fig. 4.6 

(Chen et al. 2013c). 
     

 
     

Fig. 4.6. Decision graph of five alternatives 

    
 

(2) 6n = . Results involving only the alternative 6A  obtained in Steps 1 and 2 

are listed in Tables 4.11 and 4.12 (Chen et al. 2013c), respectively.   
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Table 4.11. Hesitant fuzzy decision matrix for 6A  

 
1x  2x  3x  4x  

6A  {0.5,0.7,0.9} {0.4,0.5,0.7,0.9} {0.5,0.8} {0.4,0.5,0.8} 

Table 4.12. Score values and deviation values of 6A  

6A  1x  2x  3x  4x  

Score values 0.7 0.625 0.65 0.5667 

deviation values 0.1633 0.1920 0.15 0.1700 
     

Table 4.13. Data of 
ijcJ , '

ijc
J ,

ijdJ , '
ijd

J , ijc  and ijd  of the 6th line and the 6th column 

for 6n =  

 
ijcJ  '

ijc
J  

ijdJ  '
ijd

J  
ijc  ijd  

1, 6i j= =  −  −  {1,2,3,4} −  0 1 

2, 6i j= =  {4} −  {1,3} {2} 0.35 0.6667 

3, 6i j= =  −  −  {3,4} {1,2} 0 0.7292 

4, 6i j= =  {4} −  −  {1,2,3} 0.35 0.5238 

5, 6i j= =  {4} −  {1,3} {2} 0.35 0.5786 

6, 1i j= =  {1,2,3,4} −  −  −  1 0 

6, 2i j= =  {1,3} {2} {4} −  0.55 0.2692 

6, 3i j= =  {3,4} {1,2} −  −  0.8333 0 

6, 4i j= =  −  {1,2,3} {4} −  0.4333 1 

6, 5i j= =  {1,3} {2} {4} −  0.55 1 
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When the number of alternatives arrives at 6, the results obtained from Step 3 to 
Step 6 can be expressed with the 6 6×  matrix in which except the data of the 6th 
line and the 6th column, other data are the same as those in 5 5×  matrix when the 
number of alternatives is 5. Thus, we only list in Table 4.13 (Chen et al. 2013c) the 
data of the 6th line and the 6th column of the 6 6×  matrix, which are the hesitant 

fuzzy concordance set 
ijcJ , the weak hesitant fuzzy concordance set '

ijc
J , the 

weak hesitant fuzzy discordance set 
ijhdJ , the hesitant fuzzy discordance set '

ijd
J , 

the hesitant fuzzy concordance indexes ijc , and the hesitant fuzzy discordance 

indexes ijd , respectively. 
 

Steps 7 and 8. Calculate the hesitant fuzzy concordance level and the discordance 
level: 

1 1,

0.4489
( 1)

m m
kl

k l l k

c
c

m m= = ≠

= =
−  , 

1 1,

0.6167
( 1)

m m
kl

k l l k

d
d

m m= = ≠

= =
−   

     
Step 9.  Construct the aggregation dominance matrix: 

     
0 1 0 0 0

0 1 0 0 0

0 0 0 0 0

1 1 1 1 0

1 1 1 0 0

1 1 1 0 0

P

− 
 − 
 −

=  − 
 −
  − 

 

     
Step 10.  As it can be seen from the matrix P  that 1A  is preferred to 3A ; 2A  is 

preferred to 3A ; 4A  is preferred to 1A , 2A , 3A  and 5A ; 5A  is preferred to 1A , 

2A  and 3A ; 6A  is preferred to 1A , 2A  and 3A  (see Fig. 4.7 (Chen et al. 2013c)). 
     

 

Fig. 4.7. Decision graph of six alternatives 
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(3) 7n = . Analogous to the case of 6n = , main results obtained from Step 1 to 

Step 6 are summarized in Tables 4.13-4.15 (Chen et al. 2013c).     

Table 4.14. Hesitant fuzzy decision matrix for 7A  

 
1x  2x  3x  4x  

7A  {0.2,0.3,0.4} {0.2,0.3,0.4,0.7} {0.3,0.5,0.6,0.7} {0.2,0.3,0.4,0.5} 

Table 4.15. Scores and deviations of 7A  

7A  1x  2x  3x  4x  

Scores 0.3 0.4 0.525 0.35 

deviation degrees 0.0816 0.1871 0.1479 0.1118 

Table 4.16. Data of 
ijcJ , '

ijc
J ,

ijdJ , '
ijd

J , ijc  and ijd  of the 7th line and the 7th column 

for 7n =  

 
ijcJ  '

ijc
J  

ijdJ  '
ijd

J  ijc  ijd  

1, 7i j= =  −  {1,2,3,4} − − 0.6667 0 

2, 7i j= =  −  {1,3,4} − {2} 0.4667 0.1633 

3, 7i j= =  {2} {1,3,4} − − 0.7667 0 

4, 7i j= =  {3,4} {1} − {2} 0.6333 0.1088 

5, 7i j= =  {2} {1,4} {3} − 0.6667 0.0756 

6, 7i j= =  −  {1,2,3,4} − − 0.6667 0 

7, 1i j= =  −  − − {1,2,3,4} 0 0.6667 

7, 2i j= =  −  {2} − {1,3,4} 0.2 0.6667 

7, 3i j= =  −  − {2} {1,3,4} 0 0.6667 

7, 4i j= =  −  {2} {3,4} {1} 0.2 1 

7, 5i j= =  {3} − {2} {1,4} 0.15 0.6667 

7, 6i j= =  −  − − {1,2,3,4} 0 0.6667 
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Steps 7 and 8.  Calculate the hesitant fuzzy concordance level and discordance 

level: 

7 7

1 1,

0.4258
7(7 1)

ij

i j j i

c
c

= = ≠

= =
−  , 

7 7

1 1,

0.5520
7(7 1)

ij

i j j i

d
d

= = ≠

= =
− 

 

Step 9. Construct the aggregation dominance matrix: 

0 1 0 0 0 1

0 1 0 0 0 1

0 0 0 0 0 1

1 1 1 1 0 1

1 1 1 0 0 1

1 1 1 0 0 1

0 0 0 0 0 0

P

− 
 − 
 −
 = − 
 −
 

− 
 − 

 

     
Step 10.  As it can be seen from the aggregation dominance matrix that 1A  is 

preferred to 3A  and 7A ; 2A  is preferred to 3A  and 7A ; 3A  is preferred to 

7A ; 4A  is preferred to 1A , 2A , 3A , 5A  and 7A ; 5A  is preferred to 1A , 

2A , 3A  and 7A ; 6A  is preferred to 1A , 2A  3A  and 7A  (see Fig. 4.8  

(Chen et al. 2013c)). 
 

 

Fig. 4.8. Decision graph of seven alternatives 

To facilitate to see the possible influence due to a change in the number of 
alternatives, the outranking relations obtained for the cases of 4,5,6N =  and 7  

are listed in Table 4.16 (Chen et al. 2013c). 
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Table 4.17. Comparison of the outranking relations for different number of alternatives 

The number of 

alternatives 
c  d  Results 

4n =  

 (Example 4.3) 
0.4611 0.6472 

1 3 2 3

4 1 2 3

; ;

, ,

A A A A

A A A A

 


 

5n =  0.4525 0.6367 

1 3 2 3

4 1 2 3 5

5 1 2 3

; ;

, , , ;

, ,

A A A A

A A A A A

A A A A

 



 

6n =  0.4489 0.6167 

1 3 2 3

4 1 2 3 5

5 1 2 3

6 1 2 3

; ;

, , , ;

, , ;

, ,

A A A A

A A A A A

A A A A

A A A A

 




 

7n =  0.4258 0.5520 

1 3 7 2 3 7

3 7 4 1 2 3 5 7

5 1 2 3 7

6 1 2 3 7

, ; , ;

; , , , , ;

, , , ;

, , ,

A A A A A A

A A A A A A A A

A A A A A

A A A A A

 
 



 
It can be seen from Table 4.17 (Chen et al. 2013c) that varying the number of 

alternatives does not change the result that 4A  is a non-outranked alternative in 

Example 4.3. We explain it in the following way:  
First, when the number of alternatives is respectively 5, 6 and 7, the hesitant 

fuzzy concordance (discordance) indices given in Example 4.3 do not be changed. 
Second, although a variation in the number of alternatives slightly modifies the 
hesitant fuzzy concordance level c  and the discordance level d  (see Table 4.17 
(Chen et al. 2013c)), but the changes in c  and  d  are still within the sensitivity 
range of Example 4.3 in which the parameter changes will not affect the set of the 
non-outranked alternatives. Specifically, in Example 4.3, 0.4611c =  and 

0.6472d = . A decrease (increase) in c  ( d ) cannot bring about a change in the 
set of alternatives that are not outranked by other alternatives (Vetschera 1986). 
Thus, c  could be lowered to zero and d could be raised to 1. Moreover, we note  
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from the hesitant fuzzy concordance (discordance) matrices (given in Step 5 (Step 

6) in Example 4.3) that when c  is increased above 0.55, the alternative 3A  is no 

longer outranked by any other alternative. For the alternative 1A  ( 2A ), the 

corresponding value is 0.7 (0.8), as for 0.7c <  ( 0.8c < ) it remains outranked 

by the alternative 4A . The first change in the set of the non-outranked alternatives 

occurs when c  is increased to 0.55. A similar analysis can be performed for the 

discordance level. When d  is lowered below 0.3361, 1A  is no longer outranked. 

The corresponding value for 2A ( 3A ) is 0.3265 (0.1143), so the lower bound for 

d  is thus given by 0.3361. Taken together, we find in Example 4.3 that when the 

parameters satisfy 0 0.55c< <  and 0.3361 1d< < , the set of the 
non-outranked alternatives will not be affected.  

In the following, we survey the outranking relations for different numbers of 
attributes. To this end we increase the number of attributes by five and six (see 
Table 4.18 (Chen et al. 2013c)).  

Table 4.18. Hesitant fuzzy information of the fifth and sixth attribute for each alternative 

 
1A  2A  3A  5A  

5x  
{0.3,0.6,0.7} {0.2,0.4,0.5,0.6} {0.3,0.7,0.8} {0.4,0.5,0.7,0.9} 

6x  
{0.4,0.5,0.7,0.8} {0.5,0.7,0.9} {0.3,0.4,0.6,0.9} {0.5,0.6,0.8} 

     

Because the weights of all attributes satisfy the normalization constraint 

1

1
n

j
j

w
=

= , varying the number of attributes inevitably changes the original 

weights of attributes. This will affect the outranking relations, as have been pointed 
out in many previous works (see, e.g., Vetschera (1986), Henggeler Antunes and 
Clímaco 1992). As an illustration, we list in Table 4.19 (Chen et al. 2013c) the 
corresponding results for the outranking relations within the HF-ELECTRE I 
framework and the comparison with the case that the number of attributes is four. 
As it can be seen in the table, the results of the outranking relations for different 
number of attributes calculated with the HF-ELECTRE I method are consistent 
with the general expectation.   
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Table 4.19. Comparison of the outranking relations for different number of attributes  

The number of 

attributes 
Weight Results 

4 

 (Example 4.3) 
( )0.2,0.3,0.15,0.35w

Τ=  
1 3 2 3

4 1 2 3

; ;

, ,

A A A A

A A A A

 


 

5 ( )0.2,0.3,0.15,0.2,0.15w
Τ=  

2 1 3 1

4 1 2 3

; ;

, ,

A A A A

A A A A

 


 

6 ( )0.2,0.15,0.15,0.2,0.15,0.15w = 4 1 2 3

2 1 3 3 1

, , ;

, ;

A A A A

A A A A A


 

 

 
In order to further evaluate the HF-ELECTRE I method, a simulation with 

randomly generated cases is made in a direct and transparent way. Random data are 
generated to form the MCDM problems with all possible combinations of four, six, 
eigth, ten alternatives and four, six, eight, ten attributes. So, sixteen (4×4) different 

instances are examined in this study. We find that the alternative 1A  (see below 

for details) in all these instances is the best one.  
In the following, the cases corresponding to the combinations of four alternatives 

(i.e., 1 2 3 4{ , , , }A A A A A= ) with four, six, eight, ten attributes are employed to 

illustrate our simulation process. Under the environment of group decision making, 
the performance of each alternative on each attribute can be considered as a HFS, 

represented by { }, ( )
ii j A j jA x h x x X= < > ∈ , 1, , 4i =  , where 

( )
iY jh x (= { }( ), 0 1

iA jh xγ γ γ∈ ≤ ≤ ) indicates all possible membership 

degrees of the alternative iA  on the attribute jx . The characteristics of these four 

alternatives are assigned as follows: For 
1
( ),A jh xγ ∈  (0.8,1)Uγ  ; For 

2
( ), (0.6,0.8)A jh x Uγ γ∈  ; For 

3
( ),A jh xγ ∈  (0.4,0.6)Uγ  ; For 

4
( ), (0.1,0.4)A jh x Uγ γ∈  , where ( , )U a b  means the uniform distribution on 

the interval [ , ]a b .  

In terms of the above-described way, we have simulated 100 times 
corresponding to each instance with the number of criteria being four, six, eight and 
ten, respectively. Besides the γ  values, in each simulation, the number of γ  in 



424 4   Hesitant Fuzzy MADM Models 

 

each ( )
iA jh x  and the weights of all attributes (which satisfy 0 1jw≤ ≤ , 

1,2,...,j n= , and 
1

1
n

j
j

w
=

= ) are also randomly generated. Consequently, all 

quantities calculated in the HF-ELECTRTE I fluctuate in each time simulation. As 

an example, Fig. 4.9 (Chen et al. 2013c) displays the scores of ( )
iA jh x  of four 

alternatives on an attribute, which shows the obvious variations for different 
simulations.  
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Fig. 4.9. Scores of ( )
iA jh x  of the alternative 

1A  (yellow line), 2A (blue line), 

3A (green line) and 4A (red line) on an attribute in a hundred times simulations 

     
Following the steps of the HF-ELECTRE I method outlined previously, our 

simulation results for the randomly generated instances demonstrate that the 

outranking relations are consistent with the expectation, that is, 1A  is the best 

alternative due to a larger role of the performance of alternatives in influencing the 
outranking relations as compared to the weights and threshold values (Buchanan 
and Vanderpooten 2007). This consistency further indicates the validity of the 
HF-ELECTRE I method.  

As we know, there exist several other outranking ELECTRE type methods, for 
example, ELECTRE III (Buchanan and Vanderpooten 2007; Figueira et al. 2005) 
and ELECTRE IV (Roy and Hugonnard 1982) methods, which are able to deal with 
the ranking problems, that is, it is concerned with the ranking of all the actions 
belonging to a given set of actions from the best to the worst (Figueira et al. 2005). 
Although the HF-ELECTRE I method is used to construct a partial prioritization 
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and to choose a set of preferable actions, which is somewhat different from the 
ELECTRE III and ELECTRE IV methods, it is interesting to compare the results 
obtained using these different methods aiming at seeing the ranking differences 
among them: 

To facilitate a comparison, the same example (Example 4.3) used to illustrate the 
HF-ELECTRE I method is also considered for the ELECTRE III and ELECTRE IV 
methods, which is composed of the construction and the exploitation of the 
outranking relations.  

We first briefly discuss the ELECTRE III method, for more details see Buchanan 
and Vanderpooten (2007), and Figueira et al. (2005).   

We introduce the construction of the outranking relations. Let two alternatives 

1A  and 2A  belong to a given set of actions, and 1( )jy A  and 2( )jy A  the 

performances of 1A  and 2A  in terms of the attribute jx . We denote 

indifference, preference and veto thresholds on an attribute jx  introduced by the 

DMs with jq , jp  and jo , respectively, where 1,2, ,j n=  .  

A partial concordance index ( )1 2,jc A A  is defined as follows for each 

attribute jx : 

1 2

1 2 1 2

1 2

1, ( ) ( )

( , ) 0, ( ) ( ),

( ) ( )
,

j j j

j j j j

j j j

j j

y A q y A

c A A y A p y A

p y A y A

p q


 + ≥= + ≤
 + −

−

if

if

otherwise

1, ,j n=    (4.35) 

     
Let jw  be the importance coefficient for the attribute jx . ( )1 2,c A A  is an 

overall concordance index and defined as: 
     

( )1 2 1 2
1

1
( , ) ,

n

j j
j

c A A w c A A
w =

=                       (4.36) 

where 
1

n

j
j

w w
=

= . The discordance index for each attribute jx , 1 2( , )jd A A  

is calculated as: 
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1 2

1 2 1 2

2 1

0, ( ) ( )

( , ) 1, ( ) ( ),

( ) ( )
,

j j j

j j j j

j j j

j j

y A p y A

d A A y A o y A

y A y A p

o p


 + ≥= + ≤
 − −

−

if

if

otherwise

1, ,j n=    (4.37) 

     

The credibility degree ( )1 2,S A A  for each pair 1 2( , )A A  is defined as: 

     

( )
( ) ( ) ( )

( ) ( )
( )( ) ( )1 2 1 2

1 2 1 2 1 2

1 21 2
1 2

{1,2,..., }: , , 1 2

, , , , ,

1 ,,
, ,

,
j

j

j

j n d A A c A A

c A A d A A c A A j

d A AS A A
c A A

c A A∈ >

 ≤ ∀
 −=  ⋅


∏

if

otherwise

 (4.38)              

     
The ELECTRE model is “exploited” to produce a project ranking from the 

credibility matrix. We follow the standard implementation presented by Buchanan 

and Vanderpooten (2007), and Figueira et al. (2005).  
     

In what follows, we present the process that the ELECTRE III method is utilized 

to tackle Example 4.3 (Chen et al. 2013c):  
     

Step 1. Construction of fuzzy group decision matrix: 

As mentioned previously, in the hesitant fuzzy decision matrix ( )
4 4ijH h
×

= , 

each element { },0 1ij ijh hγ γ γ= ∈ ≤ ≤  indicates the possible membership 

degrees of the i th alternative iA  under the j th attribute by the DMs.  

To derive the group decision matrix, we aggregate the DMs’ individual 
decision information with the averaging operator, which is defined by 

1

ijij

ij
hh

h
l γ

γ
∈

=  . As it can be easily seen that the results obtained from the formula 

are just those of the score function mentioned earlier, which has been given in Table 

4.5. So, the fuzzy group decision matrix ( )
4 4ijH h

×
=   is obtained.  

Step 2.  Indifference, preference and veto threshold values on an attribute jx  are 

introduced by the DMs and given in Table 4.20 (Chen et al. 2013c). 
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Table 4.20. Three threshold values  

Threshold values 1x  2x  3x  4x  

jq  0.02 0.05 0.02 0.02 

jp  0.1 0.1 0.05 0.1 

jo  0.3 0.3 0.2 0.3 

     

Step 3. Calculate the partial concordance index ( , )j i kc A A  with Eq.(4.35) and 

summarize the results in Table 4.21 (Chen et al. 2013c).  
     

Table 4.21. Partial concordance index for each attribute jx  

  
1A  2A  3A  4A  

( )1 ,i kc A A  1A  1 0 0.1038 0.8325 

 
2A  1 1 1 1 

 
3A  1 0.9375 1 1 

 
4A  1 0.2088 0.5213 1 

( )2 ,i kc A A  1A  1 1 1 1 

 
2A  0 1 0 1 

 
3A  0 1 1 1 

 
4A  0 1 0 1 
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Table 4.21. (continued) 

( )3 ,i kc A A  1A  1 1 0.5 0 

 
2A  1 1 0.8333 0 

 
3A  1 1 1 0.8333 

 
4A  1 1 1 1 

( )4 ,i kc A A  1A  1 0 1 0 

 
2A  1 1 1 0 

 
3A  0.75 0 1 0 

 
4A  1 1 1 1 

     
Step 4. Calculate the overall concordance index ( ),i kc A A  with Eq.(4.36) and 

summarize the results in Table 4.22 (Chen et al. 2013c).  

Table 4.22. Concordance matrix 

 
1A  2A  3A  4A  

1A  1 0.45 0.7458 0.4665 

2A  0.7 1 0.6750 0.5 

3A  0.6125  0.6375 1 0.6250 

4A  0.7 0.8418 0.6043 1 

     
Step 5. Calculate the discordance index ( ),j i kd A A  with Eq.(4.37) and 

summarize the results in Table 4.23 (Chen et al. 2013c). 



4.2   ELECTRE I Method for Hesitant Fuzzy MADM 429 

 

Table 4.23. Discordance index for each attribute jx  

  1A  2A  3A  4A  

( )1 ,i kd A A  1A  0 0.0835 0 0 

 2A  0 0 0 0 

 3A  0 0 0 0 

 4A  0 0 0 0 

( )2 ,i kd A A  1A  0 0 0 0 

 2A  0.6665 0 0.125 0 

 3A  0.0415 0 0 0 

 4A  0.6665 0 0.125 0 

( )3 ,i kd A A  1A  0 0 0 0.0667 

 2A  0 0 0 0 

 3A  0 0 0 0 

 4A  0 0 0 0 

( )4 ,i kd A A  1A  0 0.3 0 1 

 2A  0 0 0 0.25 

 3A  0 0.5 0 1 

 4A  0 0 0 0 
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Step 6. Calculate the credibility degree ( ),i kS A A  with Eq.(4.38) and 

summarize the results in Table 4.24 (Chen et al. 2013c). 

Table 4.24. Credibility matrix  

 
1A  2A  3A  4A  

1A  1 0.45 0.7458 0 

2A  0.7 1 0.6750 0.5 

3A  0.6125  0.6375 1 0 

4A  0.7 0.8418 0.6043 1 

 
Using the exploiting procedure from the credibility matrix, the result of 

outranking is 4 2 3 1A A A A   .  

We next analyze the calculations with the ELECTRE IV method.  

Let two alternatives 1A  and 2A  belong to a given set of actions, and 1( )jy A  

and 2( )jy A  the performances of 1A  and 2A  in terms of the attribute jx . We 

denote indifference, preference and veto thresholds on the attribute introduced by 

the DMs with jq , jp  and jo , respectively, where 1,2, ,j n=  . ( )1 2,J A A+  

and ( )1 2,J A A−  respectively represent the sums of all those attributes where the 

performance of 1A  is superior and inferior to 2A , that is,  
     

( ) { }1 2 2 2 1, : ( ) ( ( )) ( )j j j jJ A A j J j y A q y A y A+ = ∈ + <         (4.39) 

           

( ) { }1 2 1 1 2, : ( ) ( ( )) ( )j j j jJ A A j J j y A q y A y A− = ∈ + <        (4.40) 

     
The ELECTRE IV method contains two levels of the outranking relations; The 

strong outranking relation S +  and the weak outranking relation S − , which are 
defined by 

     

1 2 1 1 2, ( ) ( ( )) ( )j j j jAS A j y A p y A y A+ ⇔∀ + ≥  and 
1 2 1 2( , ) ( , )J A A J A A+ −>  (4.41) 
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1 2 1 1 2

1 1 2 1 1

1 2 1

, ( ) ( ( )) ( )

, ( ) ( ( )) ( ) ( ) ( ( ))

: ( ) ( ) ( ( ))
2

j j j j

k k k k k k k

j j j j

A S A j y A p y A y A

k y A o y A y A y A p y A
or n

and j y A y A p y A

− ⇔ ∀ + ≥

∃ + ≥ > +

 − > ≥

  (4.42) 

     

where J  denotes the number of elements in the set J .  

The ELECTRE IV method exploiting procedure is the same as in the ELECTRE 
III method (Buchanan and Vanderpooten 2007; Figueira et al. 2005).  

The details of dealing with Example 4.3 with the ELECTRE IV method are given 
(Chen et al. 2013c): 

     
Step 1. The process is the same as that with the ELECTRE III method. 

     

Step 2.  Indifference, preference and veto threshold values on the attribute jx  are 

the same as those given in Table 4.20.  
     

Step 3.  Calculate ( ),i kJ A A+
 and ( ),i kJ A A−

 with Eqs.(4.39) and (4.40). 

The results are summarized in Table 4.25.  
     

Step 4. Calculate the outranking relation S  between alternatives with Eqs.(4.41) 
and (4.42). The results are also displayed in Table 4.25 (Chen et al. 2013c). 

Table 4.25. ( ),i kJ A A+
, ( ),i kJ A A−

 and the outrankings 

  

1A  
  

2A  
  

3A  
  

4A  
 

 J +
 J −

 S  J +
 J −

 S J +
 J −

 S J +
 J −

 S  

1A     {2} {1,4}  {2,4} {1,3} S- {2} {1,3,4} 
 

2A  {1,4} {2} S-
    {1,4} {2,3}  {1} {3,4} 

 

3A  {1,3} {2,4}  {2,3} {1,4}     {1,2} {3,4} 
 

4A  {1,3,4} {2} S- {3,4} {1} S+ {3,4} {1,2}    
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We can see from Table 4.25 that 1 3S
A A− , 2 1S

A A− , 4 1S
A A− , and 

4 2S
A A+ . 

     
Step 5. Draw the strong and weak outranking graphs in Fig. 4.10 (Chen et al. 2013c). 

     

 
Fig. 4.10. (a) Strong outranking graph               (b) Weak outranking graph 

With the exploiting procedure, the resulting outranking is 4 2 1 3A A A A   .  

One can see the conclusions obtained with the ELECTRE III and ELECTRE IV 
methods are partially consistent with that derived with the HF-ELECTRE I 
methods, whereas a difference in the outranking relations is also noticed. We 
explain it in the following way: In the ELECTRE III and ELECTRE IV group 
outranking methods, because group decision information is obtained through 
averaging for all DMs, so only information involving the average opinion of all 
DMs is considered, whereas in the HF-ELECTRE I method, in addition to that 
consideration, the deviation degrees which reflect the difference in opinions 
between the individual DMs and their averages are also accounted for. It should be 
pointed out that the ELECTRE III and ELECTRE IV methods can give the ranking 
of all alternatives, which is different from the HF-ELECTRE I method that gives 
the partial outranking relations, thus, these two kinds of group decision making 
approaches are complementary.  

4.3   Interactive Decision Making Method under Hesitant Fuzzy 
Environment with Incomplete Weight Information 

4.3   Interactive Decision Making Method under Hesitant Fuzzy Env ironment   

4.3.1   Satisfaction Degree Based Models for MADM with 
Incomplete Weight Information 

According to the interpretation of the special HFEs in Subsection 1.1.1, we know 
that the alternative whose ratings over attributes are all full sets is ideal and 
desirable, and similarly the alternative whose evaluation values over attributes are 

all empty sets is negative and undesirable. If all ratings of the alternative iA  over 

1A

2A

4A

4A 3A1A

2A
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the attributes jx ( 1, 2, ,j n=  ) are full sets, then the overall value of iA  can be 

calculated easily (also using the AHFWA operator (3.25) as an illustration): 
     

( )
1

1

({1},{1}, ,{1}) {1} 1 (1 1) 1,2, , {1}j

nn
w

j
j

j

g AHFWA w t l+

= =

  = = ⊕ = − − = = 
  

∏ 
 

(4.43) 

Analogously, if all evaluation values of the alternative iA  over the attributes 

jx ( 1, 2, ,j n=  ) are empty sets, then the overall value of iA  can be 

calculated: 
     

( )
1

1

({0},{0}, ,{0}) {0} 1 (1 0) 1,2, , {0}j

nn
w

j
j

j

g AHFWA w t l−

= =

  = = ⊕ = − − = = 
  

∏    (4.44) 

     
Definition 4.4. (Liao and Xu 2013a)  ( ){1},{1}, ,{1}h+ =   is called the 

hesitant fuzzy positive ideal solution, and ( ){0},{0}, ,{0}h− =   is called the 

hesitant fuzzy negative ideal solution. 

For any alternative iA  with the ratings ( )1 2, , ,i i i inh h h h=  , based on the 

distance measure of HFEs mentioned in Section 2.1, we can calculate the distance 

between the alternative iA  and the hesitant fuzzy positive ideal solution h+  and 

also the distance between the alternative iA  and the hesitant fuzzy negative ideal 

solution h− , respectively. Combining (3.25), (4.43), (4.44), and taking hesitant 
normalized hamming distance as an illustration, we can derive the distances 
according to their overall values: 

     

( )( )
Hamming

11

1
( , ) 1 1 1j

l n wt
i ij

jt

d g g h
l

s+

==

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
å    

( )( )

11

1
1

j
l n wt

ij
jt

h
l

s

==

= -å                  (4.45) 

     

( )( )
Hamming

11

1
( , ) 1 1 0j

l n wt
i ij

jt

d g g h
l

s-

==

æ ö÷ç ÷= - - -ç ÷ç ÷çè ø
å 
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( )( )

11

1
1 1

j
l n wt

ij
jt

h
l

s

==

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
å                  (4.46) 

     

where { }
1 2

max , , ,
i i inh h hl l l l=  .  

Since ( ) { }
1 2

( )

1

( ) 1 1 1,2, , ; max , , ,
j

i i in

n wt
i ij h h h

j

g w h t l l l l lσ

=

  = − − = = 
  

∏   , 

then can see that Hamming( , ) ( )i id g g s g- = , i.e., the distance between ig  and 

g −  equals the score of ig , which is just a coincidence.  

Ostensibly, all of these derivations seem to be quite easy. However, we may 
ignore an importance precondition, in which the weight information is partially 
known and we can not get the crisp weights corresponding to different attributes. 
Consequently, it is hard or impossible to calculate the distance between the 

alternatives iA ( 1, 2, ,i n=  ) and the hesitant fuzzy positive ideal solution h+  

and the distance between the alternatives iA  ( 1,2, ,i n=  ) and the hesitant fuzzy 

negative ideal solution h−  by using Eqs.(4.45) and (4.46). Even to determinate the 
weights is also a difficult or insurmountable question due to the fact that the 
unknown parameters jw ( 1,2, , )j n=   are in the exponential term. Hence, we 

need to find a novel way to solve this issue. 
Reconsider the main idea of what we have done above. We firstly fuse the values 

ijh  ( 1, 2, ,j m=  ) of the alternative iA  over the attributes 

jx ( 1, 2, ,j m=  ) by using some developed operators, and then calculate the 

distance between the derived overall values ig  and g +  or g − . What about 

changing the order of the process? If we firstly calculate the distance between each 
rating and the hesitant fuzzy positive ideal point or the hesitant fuzzy negative ideal 

point, and then fuse the distances with respect to the attributes jx ( 1, 2, ,j n=  ) 

according to some developed aggregation operators, the computational complexity 
will be changed significantly, which makes the problem easy to handle. 

Since  

( ) ( )( ) ( )
Hamming

1 1

1 1
, 1 1

l l
t t

ij ij ij ij
t t

d h h h h
l l

s s+

= =

= - = -å å    
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( )

1

1
1 1 ( )

l
t

ij ij
t

h s h
l

s

=

= - = -å                 (4.47) 

( ) ( )
Hamming

1 1

1 1
( , ) 0 ( )

l l
t t

ij ij ij ij ij
t t

d h h h h s h
l l

s s-

= =

= - = =å å    (4.48) 

     
then we can fuse the distances with respect to different attributes by some 
developed operators. These operators are not limited by the hesitant fuzzy 
aggregation operators but all of the classical operators (Xu and Da 2003) because 

the distance Hamming( , )ij ijd h h+  and Hamming( , )ij ijd h h-  are all crisp values. 

Taking the weighted averaging operator as an example, the overall distance 

between the alternative iA  and the hesitant fuzzy positive ideal solution h+  and 

also the distance between the alternative iA  and the hesitant fuzzy negative ideal 

solution h−  can be derived respectively: 
     

( )'
Hamming

1 1

( , ) 1 ( ) 1 ( )
m m

i j ij j ij
j j

d g g w s h w s h+

= =

= - = -å å            (4.49) 

'
Hamming

1

( , ) ( )
m

i j ij
j

d g g w s h-

=

= å                        (4.50) 

     
Intuitively, the smaller the distance '

Hamming( , )id g g+ , the better the alternative; 

While the larger the distance '
Hamming( , )id g g- , the better the alternative. 

Motivated by the TOPSIS method (Hwang and Yoon 1981; Chen and Hwang 

1992), we shall take both of the distance '
Hamming( , )id g g+  and the distance 

'
Hamming( , )id g g-  into consideration simultaneously rather than consider them 

alone. Then we derive the definition of satisfaction degree naturally. 
     

Definition 4.5 (Liao and Xu 2013a).  A satisfaction degree of the given alternative 

iA  over the attributes jx ( 1, 2, ,j m=  ) with the weight vector 

1 2( , , ,w w w=   T)mw ∈ Δ  (here Δ  is a set of the known weight information 

shown in Section 4.1) is defined as: 
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( ) Hamming

Hamming Hamming

( , )
( )

( , ) ( , )
i

i
i i

d g g
g w

d g g d g g
ρ

−

+ −=
+

              (4.51) 

     

where 0 1,jw≤ ≤  1, 2, ,j m=  , and 
1

1
m

j
j

w
=

= . 

Combining Eqs.(4.49), (4.50) and (4.51), we have  
     

( )
'
Hamming

' '
Hamming Hamming

( , )
( )

( , ) ( , )
i

i
i i

d g g
g w

d g g d g g
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−

+ −=
+

  

1

1

1 1

( )

( )
1 ( ) ( )

m

j ij m
j

j ijm m
j

j ij j ij
j j

w s h

w s h
w s h w s h

=

=

= =

= =
− +




 
            (4.52) 

     
From Eqs.(4.50) and (4.52), we can see that the satisfaction degree reduces to the 

distance between the alternative iA  and the hesitant fuzzy negative ideal solution 

h− , which is a coincidence and the property of HFSs. In order not to lose quite 
much information and make our method more applicable, we introduce a parameter 
θ , which denotes the risk preferences of the decision makers: 0.5θ >  means the 
DMs are pessimists and the further the distance between the alternative and the 
positive ideal solution, the better the choice; While 0.5θ <  means the opposite. 
Consequently, the satisfaction degree becomes 

     

( )
( )

( )
1

1 1

1 ( )

( )

1 ( ) 1 ( )

m

j ij
j

i m m

j ij j ij
j j

w s h

g w

w s h w s h

θ
ρ

θ θ

=

= =

−
=

 
− + − 

 



 
          (4.53) 

     
The value of the parameter θ  is provided by the DM in advance. It is obvious 

that ( )0 ( ) 1ig wρ≤ ≤ , for any [0,1]θ ∈ , 1, 2, ,i n=  . As our purpose is to 

select the alternative with the highest satisfaction degree, the following 
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multi-objective optimization model can be generated naturally (Liao and Xu 

2013a): 
     

(M-4.1)       ( )1 2max ( ( )), ( ( )), , ( ( ))ng w g w g wρ ρ ρ  

. .s t  T
1 2( , , , )mw w w w= ∈ Δ , 

0 1,jw≤ ≤  1, 2, ,j m=  , 

1

1
m

j
j

w
=

= . 

     
We change the model (M-4.1) into a single-objective optimization model by 

using the equal weighted summation method (French et al. 1983):  
     

(M-4.2)          ( )
1

max ( )
n

i
i

g wρ
=
  

. .s t  T
1 2( , , , )nw w w w= ∈ Δ , 

0 1,jw≤ ≤  1, 2, ,j m=  , 

1

1
m

j
j

w
=

= . 

     
Combining Eq.(4.53) and the model (M-4.2), Liao and Xu (2013a) established 

the following model: 
     

(M-4.3)     

( )

( )
1

1

1 1

1 ( )

max

1 ( ) 1 ( )

m

j ijn
j

m m
i

j ij j ij
j j

w s h

w s h w s h

θ

θ θ

=

=

= =

−

 
− + − 

 




 
 

. .s t  T
1 2( , , , )nw w w w= ∈ Δ , 

0 1,jw≤ ≤  1, 2, ,j m=  , 
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1

1
m

j
j

w
=

= . 

     
which can be solved by using many efficient algorithms (Terlaky 1996) or using the 
MATLAB or the Lingo mathematic software package. Suppose that the optimal 

solution of the model (M-4.3) is ( )T* * * *
1 2, , , nw w w w=  , then we can calculate 

the overall value ig  of each alternative iA  according to Eq.(3.25). 

Subsequently, the ranking order of alternatives can be derived by using the 
comparison method introduced previously. 

We now consider a decision making problem that concerns the evaluation of the 
service quality among domestic airlines (Liou et al. 2011) to illustrate the model 
(M-4.3): 

     

Example 4.4 (Liao and Xu 2013a).  Due to the development of high-speed 
railroad, the domestic airline marketing has faced a stronger challenge in Taiwan. 
Especially after the global economic downturn in 2008, more and more airlines 
have attempted to attract customers by reducing price. Unfortunately, they soon 
found that this is a no-win situation and only service quality is the critical and 
fundamental element to survive in this highly competitive domestic market. In order 
to improve the service quality of domestic airline, the civil aviation administration 
of Taiwan (CAAT) wants to know which airline is the best in Taiwan. So the CAAT 
constructs a committee to investigate the four major domestic airlines, which are 
UNI Air, Transasia, Mandarin, and Daily Air and four major criteria are given to 
evaluate these four domestic airlines. These four main attributes are: 

(1) 1x : Booking and ticketing service, which involves convenience of booking or 

buying ticket, promptness of booking or buying ticket, courtesy of booking or 
buying ticket; 
(2) 2x : Check-in and boarding process, which consists of convenience check-in, 

efficient check-in, courtesy of employee, clarity of announcement and so on;  
(3) 3x : Cabin service, which can be divided into cabin safety demonstration, 

variety of newspapers and magazines, courtesy of flight attendants, flight attendant 
willing to help, clean and comfortable interior, in-flight facilities, and captain’s 
announcement; 
(4) 4x : Responsiveness, which consists of fair waiting-list call, handing of delayed 

flight, complaint handing, and missing baggage handling. 
     
There is no doubt that finding the best practice in each of the four main attributes 

and then calling all companies to learn from them respectively is better than 
determining the best company as a whole and trying to make the others follow all its 
practices, due to the fact that some of them would be inferior to the practice of some 
of the “followers”. However, selecting the best airline as a whole over all attributes 
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is also very important especially for the passengers. Meanwhile, it is also very 
useful for the company to achieve brand effect. 

Suppose that the committee gives the rating values by using HFEs, and then the 
hesitant fuzzy decision matrix H  is presented in Table 4.26 (Liao and Xu 2013a): 

Table 4.26. Hesitant fuzzy decision matrix 

 1x  2x  3x  4x  

UNI Air { }0.6,0.7,0.9 { }0.6,0.8  { }0.3,0.6,0.9 { }0.4,0.5,0.9  

Transasia { }0.7,0.8,0.9 { }0.5,0.8,0.9  { }0.4,0.8  { }0.5,0.6,0.7  

Mandarin { }0.5,0.6,0.8 { }0.6,0.7,0.9  { }0.3,0.5,0.7 { }0.5,0.7  

Daily Air { }0.6,0.9  { }0.7,0.9  { }0.2,0.4,0.7 { }0.4,0.5  

 

The weight information of these four attributes is given like this: 
     

{ T
1 2 3 4 2 1 3( , , , ) | 0.1, 0.5 0.4,mw w w w w w w w wΔ = = ≥ ≥ ≥ ≥ ≥ ≥  

4

2 1
1

2 , 1j
j

w w w
=


≤ = 


  

     
Firstly, we calculate the distance between each rating and the hesitant fuzzy 

positive ideal point or the hesitant fuzzy negative ideal point by using Eqs.(4.45) 

and (4.46). To do so, we only need to compute the score matrix S : 
     

0.7333 0.7 0.6 0.6

0.8 0.7333 0.6 0.6

0.6333 0.7333 0.5 0.6

0.75 0.8 0.4333 0.45

S

 
 
 =
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In this example, we take 0.4θ =  as an illustration. Based on the score function 

value matrix S  and the partially known weight information Δ , the model 

(M-4.3) can be established as follows: 
     

(M-4.4) 

( )
( ) ( )

1 2 3 4

1 2 3 4 1 2 3 4

0.6 0.7333 0.7 0.6 0.6
max

0.4 0.2667 0.3 0.4 0.4 0.6 0.7333 0.7 0.6 0.6

w w w w

w w w w w w w w

+ + +
+ + + + + + +

 

( )
( ) ( )

1 2 3 4

1 2 3 4 1 2 3 4

0.6 0.8 0.7333 0.6 0.6

0.4 0.2 0.2667 0.4 0.4 0.6 0.8 0.7333 0.6 0.6

w w w w

w w w w w w w w

+ + +
+

+ + + + + + +
 

( )
( ) ( )

1 2 3 4

1 2 3 4 1 2 3 4

0.6 0.6333 0.7333 0.5 0.6

0.4 0.3667 0.2667 0.5 0.4 0.6 0.6333 0.7333 0.5 0.6

w w w w

w w w w w w w w

+ + +
+

+ + + + + + +
 

( )
( ) ( )

1 2 3 4

1 2 3 4 1 2 3 4

0.6 0.75 0.8 0.4333 0.45

0.4 0.25 0.2 0.5667 0.55 0.6 0.75 0.8 0.4333 0.45

w w w w

w w w w w w w w

+ + +
+

+ + + + + + +
 

     

. .s t  3 4 2 1 0.1w w w w≥ ≥ ≥ ≥ , 

30.5 0.4w≥ ≥ ; 2 12w w≤ , 

4

1

1j
j

w
=

= . 

     
The objective function can be simplified as: 

     
1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

0.44 0.42 0.36 0.36 0.48 0.44 0.36 0.36
max

0.5467 0.54 0.52 0.52 0.56 0.5467 0.52 0.52

w w w w w w w w

w w w w w w w w

+ + + + + ++
+ + + + + +

 

    

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4

0.38 0.44 0.3 0.36 0.45 0.48 0.26 0.27

0.5267 0.5467 0.5 0.2 0.55 0.56 0.4867 0.49

w w w w w w w w

w w w w w w w w

+ + + + + ++ +
+ + + + + +

 

     
By solving this model, we get the optimal solution: 

     

( )T* * * * *
1 2 3 4, , ,w w w w w= T(0.12,0.24,0.4,0.24)=  
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According to Eq.(3.25), the overall value of each domestic airline can be 
obtained as follows (the extended hesitant fuzzy matrix whose elements are with 
equal length can be seen in Table 4.27 (Liao and Xu 2013a)): 

     

( )*
1 {0.4485,0.5293,0.8819}g w =  

( )*
2 {0.4942,0.6335,0.8282}g w =  

( )*
3 {0.4578,0.5694,0.7805}g w =  

( )*
4 {0.4571,0.5161,0.7716}g w =  

Table 4.27. Extended hesitant fuzzy decision matrix  

 1x  2x  3x  4x  

UNI Air { }0.6,0.7,0.9 { }0.6,0.6,0.8  { }0.3,0.6,0.9 { }0.4,0.5,0.9  

Transasia { }0.7,0.8,0.9 { }0.5,0.8,0.9  { }0.4,0.5,0.8 { }0.5,0.6,0.7  

Mandarin { }0.5,0.6,0.8 { }0.6,0.7,0.9  { }0.3,0.5,0.7 { }0.5,0.5,0.7  

Daily Air { }0.6,0.6,0.9 { }0.7,0.7,0.9 { }0.2,0.4,0.7 { }0.4,0.4,0.5  

     

Hence, the scores of the overall values ( )*
ig w ( 1, 2,3,4)i =  are  

     

( )( )*
1 0.6199s g w = , ( )( )*

2 0.6520s g w =  

( )( )*
3 0.6026s g w = , ( )( )*

4 0.5816s g w =  

     
respectively. 

     
Since ( )( )*

2s g w ( )( ) ( )( ) ( )( )* * *
1 3 4s g w s g w s g w> > > , then we can rank 

these four domestic airlines in descending order as ( ) ( ) ( ) ( )* * * *
2 1 3 4g w g w g w g w> > > . 
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That is to say, the service quality of Transasia is the best among the service quality of 
domestic airline in Taiwan. 

Now let’s reconsider the method again deeply. In general, in the process of 
decision making with incomplete weight information on the attributes, the basic 
thing we should do is to find the weights that are as adequate as possible to the 
opinions of the DMs. Does the given model reflect the DMs’ opinions? The answer 
is “yes”. Actually, starting from calculating the overall distance between the 

alternative iA  and the hesitant fuzzy positive ideal solution h+  and the distance 

between the alternative iA  and the hesitant fuzzy negative ideal solution h−  by 

using Eqs.(4.47) and (4.48), respectively, the DMs’ opinions have been taken into 
account. The aim of introducing the satisfaction degree is also to model the DMs’ 
opinions more comprehensive since it includes both of the above two distances. In 
addition, the parameter θ , which denotes the risk preferences of the DMs, is also 
used to enhance the reflection of the DMs’ ideas. Since the unknown weight 
information can not be obtained directly, maximizing those satisfaction degrees 
simultaneously is a good choice to find a solution which does not show any 
discrimination to certain alternative(s), and meanwhile reflects the DMs’ opinions 
comprehensively. Certainly we can also minimize those satisfaction degrees 
simultaneously if we want to select the worst alternative(s). 

4.3.2   Interactive Method for MADM under Hesitant Fuzzy 
Environment with Incomplete Weight Information 

In the previous subsection, we have presented the satisfaction degree based models 
to handle the MADM problem whose weight information is partially known. 
However, by using these models, the satisfaction degrees of certain alternatives are 
sometimes too high and simultaneously others are too low. Satisfaction degrees 
with a wide range may match with some DMs’ requirement, but, very often, in the 
process of decision making, the DMs may want to modify their satisfaction degrees 
slightly in order to provide new preference information or modify the previous 
preference information. Interacting with the DMs gradually is an acceptable and 
applicable way for doing so in reality. Interactive decision making as a hot topic has 
been studied by many scholars recently, in the situations where the ratings are given 
in HFEs, Liao and Xu (2013a) proposed an interactive method for MADM with 
hesitant fuzzy information: 

The main idea of this method can be clarified like this: Firstly, the DMs give the 
lower bounds of the satisfaction degrees with respect to each alternative, and then 
according to these lower bounds, we can establish the weights of different 
attributes. Once we have determined the different weights, the satisfaction degrees 
of different alternatives can be calculated easily and the analysts then ask the DMs 
whether they want to reconsider the satisfaction degrees or not. If the DMs are not 
satisfied with the derived satisfaction degrees, then the analysts shall inform the  
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DMs to reconsider their lower bounds of the satisfaction degrees and then go to do 
iteration till acceptable. 

In the following, we introduce this method in details. In order to help the DMs 
establish the lower bounds of the alternatives, motivated by the max-min operator 
developed by Zimmermann and Zysno (1980), we derive the following model (Liao 
and Xu 2013a): 

     

(M-4.5)               max λ  

. .s t  ( ( ))ig wρ λ≥ , 

T
1 2( , , , )mw w w w= ∈ Δ , 

0 1,jw≤ ≤ 1, 2, ,j m=  ,
1

1
m

j
j

w
=

= . 

     
By solving the model (M-4.5), we obtain the initial optimal weight vector 

( )T(0) (0) (0) (0)
1 2, , , nw w w w=   and the initial satisfaction degrees 

( )( )(0)
ig wρ  ( 1, 2, , )i n=   of the alternatives iA ( 1, 2, , )i n=  . In the 

process of MADM, the DMs can provide the lower bounds (0)
iλ ( 1, 2, , )i n=   

of the satisfaction degrees of the alternatives iA ( 1, 2, , )i n=   according to 

( )( )(0)
ig wρ ( 1, 2, , )i n=  . Once we have got the lower bounds, the attribute 

weights can be reestablished by this model (Liao and Xu 2013a): 
    

(M-4.6)       
1

max
m

i
i

λ
=
  

. .s t  (0)( ( )) , 1, 2, ,i i ig w i nρ λ λ≥ ≥ =  , 

T
1 2( , , , )mw w w w= ∈ Δ , 

0 1,jw≤ ≤ 1, 2, ,j m=  , 
1

1
m

j
j

w
=

= . 

Solving this model we can get a new weight vector 

( )T(1) (1) (1) (1)
1 2, , , nw w w w=  . If this model has no optimal solution, this means 
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that some lower bounds are greater than the corresponding initial satisfaction 
degrees. Hence it needs to be reconsidered till the optimal solution is obtained.  

For the convenience of application, the procedure of the interactive method 
for MADM under hesitant fuzzy environment with incomplete weights can be 
described as follows (Liao and Xu 2013a): 

     
(Algorithm 4.1) 
     
Step 1. Construct the hesitant fuzzy decision matrix.  
     
Step 2. Using the model (M-4.5) to determinate the initial weight vector 

( )T(0) (0) (0) (0)
1 2, , , mw w w w=   and the initial satisfaction degrees ( )( )(0)

ig wρ  

( 1,2, , )i n=   of the alternatives iA ( 1, 2, , )i n=  .  

     

Step 3. The DMs can provide the lower bounds ( )t
iλ ( 1, 2, , )i m=   of the 

satisfaction degrees of the alternatives iA ( 1,2, , )i n=   according to 

( )( )(0)
ig wρ  ( 1, 2, , )i n=  . Let 1t t= + . 

     
Step 4. Solve the model (M-4.6) to determinate the weight vector 

( )T( ) ( ) ( ) ( )
1 2, , ,t t t t

mw w w w=   and the satisfaction degrees ( )( )( )t
ig wρ ( 1,2,i =  , )m  

of the alternatives iA ( 1, 2, , )i n=  .  
     
Step 5. If the model has an optimal solution, then go to Step 6; Otherwise go to 

Step 3.  
     

Step 6. Calculate the overall values ( )( )t
ig w ( 1,2, , )i n=   of the 

alternatives iA ( 1, 2, , )i n=   and rank them according to the comparison law, 

and then choose the best alternative. 
     
Step 7. End. 
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Example 4.5 (Liao and Xu 2013a).  To show the application of our algorithm, let’s 

use Example 4.4 as an illustration again. The computational procedure can be set 

out as follows: 

We also take 0.4θ =  as an illustration. Combining Example 4.4 and the model 
(M-4.5), the following optimal programming model can be derived easily: 

     

(M-4.7)      max λ  

. .s t  1 2 3 4

1 2 3 4

0.44 0.42 0.36 0.36

0.5467 0.54 0.52 0.52

w w w w

w w w w
λ+ + + ≥

+ + +
, 

1 2 3 4

1 2 3 4

0.48 0.44 0.36 0.36

0.56 0.5467 0.52 0.52

w w w w

w w w w
λ+ + + ≥

+ + +
, 

1 2 3 4

1 2 3 4

0.38 0.44 0.3 0.36

0.5267 0.5467 0.5 0.2

w w w w

w w w w
λ+ + + ≥

+ + +
, 

1 2 3 4

1 2 3 4

0.45 0.48 0.26 0.27

0.55 0.56 0.4867 0.49

w w w w

w w w w
λ+ + + ≥

+ + +
, 

3 4 2 1 0.1w w w w≥ ≥ ≥ ≥ , 

30.5 0.4w≥ ≥ ; 2 12w w≤ , 

4

1

1j
j

w
=

= . 

     
By solving this model, we get the initial weight vector  

     

(0 )w = ( )T(0) (0) (0)
1 2, , , nw w w T(0.2,0.2,0.4,0.2)=  

     
and the vector of the initial satisfaction degrees:  

     
(0)ρ = ( )T(0) (0) (0) (0)

1 2 3 4( ), ( ), ( ), ( )g g g gρ ρ ρ ρ (73.3%,75%,= T78.3%,66.84%)  

     
of these four domestic airlines. 
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Suppose that the DMs provide the lower bounds of the satisfaction degrees of 

these four domestic airlines as: 
     

( ) ( )T T(0) (0) (0) (0) (0)
1 2 3 4, , , 70%,75%,80%,70%λ λ λ λ λ= =  

     
and the model (M-4.6) becomes the following optimal programming problem: 

     

(M-4.8)    1 2 3 4max ( )λ λ λ λ+ + +  

. .s t  1 2 3 4
1

1 2 3 4

0.44 0.42 0.36 0.36
0.7

0.5467 0.54 0.52 0.52

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
2

1 2 3 4

0.48 0.44 0.36 0.36
0.75

0.56 0.5467 0.52 0.52

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
3

1 2 3 4

0.38 0.44 0.3 0.36
0.8

0.5267 0.5467 0.5 0.2

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
4

1 2 3 4

0.45 0.48 0.26 0.27
0.7

0.55 0.56 0.4867 0.49

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

3 4 2 1 0.1w w w w≥ ≥ ≥ ≥ , 

30.5 0.4w≥ ≥ ; 2 12w w≤ , 

4

1

1j
j

w
=

= . 

     

Solving the model (M-4.8), we find there is no feasible solution. This may result 
from the fact that some of the lower bounds of the satisfaction degrees given by the 
DMs are too high. We appeal to the DMs and they then modify some of their lower 
bounds of the satisfaction degrees referring to the initial satisfaction degrees. 
Suppose that the modified lower bounds are 

     

( )T(0) (0) (0) (0) (0) T
1 2 3 4, , , (70%,72%,80%,65%)λ λ λ λ λ= =  

     
then we modify the model (M-4.8) into the model (M-4.9) (Liao and Xu 2013a): 
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 (M-4.9)    1 2 3 4max ( )λ λ λ λ+ + +  

. .s t  1 2 3 4
1

1 2 3 4

0.44 0.42 0.36 0.36
0.7

0.5467 0.54 0.52 0.52

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
2

1 2 3 4

0.48 0.44 0.36 0.36
0.72

0.56 0.5467 0.52 0.52

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
3

1 2 3 4

0.38 0.44 0.3 0.36
0.8

0.5267 0.5467 0.5 0.2

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

1 2 3 4
4

1 2 3 4

0.45 0.48 0.26 0.27
0.65

0.55 0.56 0.4867 0.49

w w w w

w w w w
λ+ + + ≥ ≥

+ + +
, 

3 4 2 1 0.1w w w w≥ ≥ ≥ ≥ , 

30.5 0.4w≥ ≥ ; 2 12w w≤ ; 
4

1

1j
j

w
=

= . 

     
Solving this model, we get  

     

( )T(1) (1) (1) (1) (1)
1 2 3 4, , ,w w w w w= T(0.12, 0.24, 0.4, 0.24)=  

     
and the satisfaction degrees:  

     
(1)ρ = ( )T(1) (1) (1) (1)

1 2 3 4( ), ( ), ( ), ( )g g g gρ ρ ρ ρ ( )T
72.73%,74.1%,80.83%,65.93%=  

     
of these four domestic airlines. If the DMs are not satisfied with these results, they 
can further modify the lower bounds of the satisfaction degrees. Suppose that the 
DMs are satisfied with these results, then we go to the next step. 

We further calculate the overall values ( )(1)
ig w ( 1, 2,3,4)i =  of these four 

domestic airlines and rank them according to the comparison law. In analogy to 

Example 4.4, we can obtain ( ) ( ) ( ) ( )(1) (1) (1) (1)
2 1 3 4g w g w g w g w> > > , and 

thus, the service quality of Transasia is best among the service quality of domestic 
airline in Taiwan. But from the satisfaction degrees, we can see 
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( ) ( )(1) (1)
3 2w wρ ρ   ( ) ( )(1) (1)

1 4w wρ ρ . The reason for this is that 

when deriving the satisfaction degree, in order to decrease the computational 
complexity, we use Eqs.(4.47) and (4.48) to substitute Eqs.(4.43) and (4.44), 
respectively. So, after we have obtained the weights of the attributes, in order not to 
lose much information, we shall calculate the satisfaction degree by using Eq.(4.49) 
instead of Eq.(4.50). Hence, the service quality of Transasia is the best among the 
service quality of domestic airline in Taiwan. 
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